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Abstract

This paper introduces V-SysId, a novel method that enables simultaneous key-1

point discovery, 3D system identification, and extrinsic camera calibration from2

an unlabeled video taken from a static camera, using only the family of equations3

of motion of the object of interest as weak supervision. V-SysId takes keypoint4

trajectory proposals and alternates between maximum likelihood parameter estima-5

tion and extrinsic camera calibration, before applying a suitable selection criterion6

to identify the track of interest. This is then used to train a keypoint tracking7

model using supervised learning. Results on a range of settings (robotics, physics,8

physiology) highlight the utility of this approach.9

1 Introduction10

Unlabeled video 
with moving objects

Eq. of motion 
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Find trajectory, 
physical parameters   , 
and 3D camera pose
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Figure 1: Given an unlabeled video containing
moving objects and an equation of motion, our
V-SysId identifies the trajectory of the object of
interest, along with its physical parameters (e.g.
restitution coefficient, initial height), and 3D pose
relative to the camera.

An understanding of the motion and physics of11

objects in the real world is a hallmark of the hu-12

man visual system. Humans have the ability to13

identify objects and their properties (eg. mass,14

friction, elasticity) as they move and interact in15

the world, due to our intuitive understanding of16

common trajectories, object interactions, and17

outcomes. This ability is typically studied under18

the umbrella of intuitive physics (5; 52; 20; 4),19

and often considered a critical component for20

machines to be able to think more like humans.21

In the context of machine learning systems, this22

ability can be distilled to a requirement for unsu-23

pervised 3D object localization and physical pa-24

rameter estimation (also known as system identi-25

fication) from a sensory stream, subject to some26

inductive bias or intuitive physics prior.27

Taking inspiration from this view, this paper introduces V-SysId, a novel method that enables28

simultaneous keypoint discovery, 3D system identification, and extrinsic camera calibration from29

a single unlabeled video taken from a static camera, using only the family of equations of motion30

of the object of interest as weak supervision. Crucially, our approach is able to identify the correct31

object(s) in a scene even in the presence of other moving objects or distractors. This property is key,32

as it greatly increases applicability to real world scenarios, enabling the system to solve queries like33

“find the 3D location of the bouncing ball, and determine its restitution coefficient”.34
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Figure 2: Our V-SysId comprises 3 stages. Stage 1 extracts keypoint tracks from a video using a
grid keypoint detector + KLT tracking. Each of these 2D tracks is passed to Stage 2, where the
physical parameters θ = {η,p0,v0} of the 3D equation of motion f , and the camera pose parameters
R, t are optimized in order to minimize the difference between the projected 3D trajectory (black,
Stage 2) and the 2D keypoint track observed (red, Stage 2). Stage 3 chooses the best trajectory and
corresponding parameters as those which maximize the sum of projected likelihood and a trajectory
entropy criterion. Here, a bouncing ball scene with 2 moving distractors is shown, where the bouncing
ball is correctly discovered as the object that corresponds to the highest entropy motion that fits the
equation of motion f .

V-SysId follows a 3-stage process of keypoint track proposal, optimization, and selection, shown in35

Fig. 2. The optimisation process alternates between maximum likelihood extrinsic camera calibration36

and maximum likelihood physical parameter estimation for motion tracks detected in video. This37

joint optimisation can be unstable, which we address through the inclusion of a curriculum-based38

optimisation strategy, alongside a maximum entropy criterion for keypoint identification. A key39

benefit of V-SysId is that a neural network is not needed for discovery or system identification in our40

pipeline. This means that V-SysId enables keypoint discovery with high-resolution images; and can41

also perform system identification in single videos, without the need to obtain large datasets, which is42

particularly useful in robotics applications, where data collection for neural network training can be43

laborious and time-consuming. The keypoints discovered by V-SysId can be used as pseudo-labels to44

train a supervised keypoint detector, for downstream tracking or control.45

These properties provide significant flexibility to V-SysId, enabling its use in real world environments46

with important applications for control, physics understanding, and health monitoring. Specifically,47

we show that the V-SysId can be applied to end-effector localization and extrinsic camera calibration,48

bouncing ball discovery and physical property estimation, and breathing frequency estimation from49

chest videos - all unlabeled and without regions of interest provided a priori. This is made possible50

by the fact that V-SysId identifies keypoints belonging to objects of interest present in scenes, while51

ignoring any other moving objects or artifacts that do not follow the expected dynamical constraints.52

This alleviates the need for hand-crafted object segmentation methods or tricks to selectively remove53

parts of the image that may contain moving distractors; and allows keypoint discovery at a fraction of54

the computational expense of unsupervised neural methods that learn to identify and model every55

moving object in an image.56

2 Related Work57

System identification and physics understanding are key to allow machine learning agents to58

interact with the real world. System identification is typically performed using proprioceptive59

trajectory data directly, and there has been extensive research across a range of fields (29; 7; 8; 57; 56;60

36) in support of this. Recent contributions include developments in physical parameter estimation61

(6; 9), simulator learning (42; 47), simulation alignment for robot interaction (2), trajectory generation62

(27) and compositionality (1; 35).63
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Unsupervised system identification from vision is a recent area of research that removes the require-64

ments for trajectory data, with approaches including unsupervised physical parameter estimation65

(24; 31; 40), structured latent space learning (32; 19; 25), and Hamiltonian/Lagrangian learning66

(18; 51; 58). Unfortunately, these approaches are still relatively limited in the complexity of scene67

they can model, and typically restricted to toy problems and simulated environments. In this work68

we aim to improve upon (24; 31; 40)’s limitation to simulated environments by performing physical69

parameter estimation on real dynamical scenes with distractors.70

The seminal GALILEO model (57) demonstrated physical system identification and simulation71

alignment using the Physics101 dataset (55). A key shortcoming of Galileo is that it assumes that72

the camera is parallel to the plane of motion, and relies on manually identified object tracks to lift73

the visual scenes onto object positions. In contrast V-SysId is able to simultaneously estimate 3D74

trajectories and camera pose relative to the scene from arbitrary camera angles, greatly increasing its75

applicability to real world scenes. Furthermore, V-SysId automatically identifies object tracks from76

keypoint proposals without needing human intervention, allowing us to automatically discover the77

objects of interest in video that are governed by the relevant equations of motion.78

Keypoint discovery Keypoints are a natural representation for object parts, with keypoint detection79

and tracking one of the earliest and most studied areas of computer vision. Approaches like SIFT80

(37), FAST (44) and ORB (46) are still widely used to perform SLAM, SFM, VO1 and other tracking81

tasks (using, e.g. a KLT tracker (50)). Given keypoint trajectories, the problem of inferring the82

3D structure of a 2D trajectory using assumptions about the dynamics has been coined "trajectory83

triangulation" by (3; 30), who assume that objects follow a straight-line or conic-section trajectory in84

3D space, and that physical parameters can be uniquely identified using multiple cameras. In contrast,85

our method assumes only a single static monocular view. Other approaches to infer moving object86

structure using motion constraints include (15; 21; 11; 48).87

When it comes to 2D keypoint discovery, several recent works have proposed neural network based88

methods that use a regularized reconstruction objective to discover objects of interest in an image89

(22; 23; 34; 38; 17; 10), which can be used for downstream control tasks. However, these approaches90

lack the ability to estimate keypoint depth, limiting their application in realistic control scenarios.91

Even though these approaches obtain semantically meaningful keypoints (and in some instances are92

able to ignore scene objects with unpredictable motion (17)), they require visual inspection in order93

to obtain interpretability. In contrast, V-SysId provides equation-driven keypoint discovery, ensuring94

a known semantic meaning for learned keypoints. A parallel stream of research tackles this from95

a geometric perspective, where 3D keypoints are inferred using camera motion cues or geometric96

constraints (49; 26; 53; 54). Even though this approach has been used in complex real world settings,97

these keypoints lack semantic meaning, making these unsuitable for semantic discovery queries (eg.98

“find the bouncing ball following these dynamics”).99

The use of dynamics as a learning constraint has not been explored in keypoint discovery literature100

to date. This work proposes a method to integrate dynamical inductive biases into the keypoint101

discovery process, enabling extrinsic camera calibration and physics-guided discovery of objects of102

interest alongside the corresponding physical parameter estimation.103

3 Method104

Our goal is to discover the 3D trajectory of an object of interest in a video with possibly many105

moving objects, given only its family of motion dynamics, f . To this end, we must estimate: a) 2D106

keypoint locations kt of the object of interest in each frame It; b) physical parameters and initial107

conditions θ, of the equation of motion f(θ); and c) camera rotation and translation relative to the108

scene [R, t]. Joint estimation of these quantities would be intractable, so we split the objective into109

tractable components. Our method, V-SysId, has 3 stages (Fig. 2). We first describe the physical110

parameter+camera pose estimation stage.111

3.1 Physical parameter and camera pose estimation112

Setup Let us assume we have a set of N 2D keypoint tracks K = {k̃n
1:T }Nn=1 across the video I1:T ,113

and a family of 3D equations of motion f with unknown physical parameters η and initial position114

1Simultaneous Localisation and Mapping, Structure-from-Motion, Visual Odometry.
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and velocity p0 and v0, respectively. The equation f can be rolled out over T time steps using a115

standard integration method in order to obtain a 3D trajectory p1:T = f(θ), where θ = {η,p0,v0}.116

Objective Our goal is to maximize the likelihood of the observed keypoint trajectory k̃1:T w.r.t.117

the physical parameters and initial conditions, θ, and the camera rotation and translation, [R t]:118

θ∗, R∗, t∗ = argmax
θ,R,t

p(k̃1:T |θ, R, t), (1)

where we factorize the trajectory likelihood as:119

p(k̃1:T |θ, R, t) =
∏
t

p(k̃t|θ, R, t) =
∏
t

N (k̃t|kt(θ, R, t), σ
2), (2)

and kt(θ, R, t) are the 2D projection of the simulated 3D trajectory (given by f(θ)):120

kt(θ, R, t) = [p̃x,t/p̃z,t, p̃y,t/p̃z,t] ; p̃t = M [R t]pt (3)
with M being the intrinsic camera matrix. In this work we assume known camera intrinsics.121

In order to reduce the space of possible solutions (and therefore local minima) of Step 1 above,122

we restrict the camera rotation matrix R to have roll = 0. This means the camera cannot rotate123

about its projection axis, which is the case in the vast majority of settings. Using the projection124

plane in camera coordinates as xy and the projection axis as z, we parametrize R as R(α, β) =125

EulerRotationMatrix(α, β, 0), where α, β and γ = 0 correspond to the pitch, yaw and roll Euler126

angles, respectively. We found that this parametrization greatly improves results and optimization127

stability.128

Optimization To maximize (2) we apply an iterative optimization procedure. Given an initial129

estimate for θ, R and t, we alternate the following steps until convergence:130

1. Keeping θ fixed, maximize (2) w.r.t. R and t using gradient descent;131

2. Keeping R and t fixed, maximize (2) wrt θ using gradient descent (with numerical or132

analytical (6) differentiation) or global optimizer (e.g. CEM (45); BO (39)).133

Estimation of the physical parameters over the full sequence (possibly hundreds of timesteps) is134

prone to local minima, as the dependency on the parameters can be highly non-linear2. This is further135

affected by the use of a non-optimized camera pose at the first iteration. In order to address this,136

we start by performing a step of physical parameter and pose estimation on a small initial trajectory137

interval, T0, adding m points to the trajectory at each iteration, as described in Algorithm 1 of138

Appendix B.139

3.2 Trajectory proposal and Selection140

Proposal In an unlabeled video, ground-truth 2D keypoints are not available, but keypoint tra-141

jectories are required to maximize the likelihood in (2). Joint estimation of physical parameters142

with a neural network-based keypoint detector would be hard to optimize due to the difficulty of143

backpropagating through physics rollouts and camera projection into a CNN in a stable manner ((24)).144

Therefore, we propose a simpler, more robust approach: We extract keypoints from the first frame of145

the video using a keypoint detector, and track them using an optical-flow-based tracker. This produces146

a set of 2D keypoint tracks k̃1:T , and allows physical parameter+pose estimation to be performed for147

each track independently.148

Selection Once the physical parameters and pose are estimated for each keypoint track, the best149

tracklet can be identified by isolating the highest projection likelihood (2). However, in order to150

prevent trivial keypoint tracklets from being chosen (since a static keypoint will easily attain maximal151

likelihood), we add a temporal entropy term to the likelihood, such as the temporal standard deviation152

of the observed trajectory, resulting in the following selection criterion:153

nbest = argmax
n∈1..N

p(k̃n
1:T |θ, R, t) + Stddevt(k̃n

1:T ) (4)

This finds the highest entropy trajectory that satisfies the physical motion constraints.154

The full V-SysId procedure is depicted in Fig. 2 and pseudocode is shown in Algorithm 1 in Appendix155

B.156

2Global optimizers have a slight advantage in this case, although they require very many iterations to find a
good minimum.
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Bouncing ball with unknown velocity, initial height, and restitution coefficient.

Archimedes spiral with unknown radius, radius increase rate, and angular velocity.

Figure 3: Discovered object and 3D perspective given the only the family of equations above as weak
supervision. Top: Example bouncing ball scene. More scenes can be found in Fig. 9 in the Appendix.
Bottom: Spiral robot arm end-effector in a real lab setting.

Inference at run-time Once the V-SysId procedure is complete, keypoints are available for the157

objects of interest in each frame in the video. These can be treated as pseudo-ground truth keypoints,158

and used to train a neural network (or another visual object detector) by supervised learning, in order159

to perform fast keypoint detection at test-time.160

4 Experiments161

Keypoint detection and tracking: We detect keypoints in the first frame by using taking the162

locations of a 10x10 grid across the frame, and use the KLT algorithm to track these across the video.163

We show comparisons between grid, ORB, SuperPoint and LF-Net keypoint detectors in Appendix D.164

Track filtering: Since the grid keypoint detector extracts hundreds of keypoints, we remove tracks165

whose length is less than 60% of the full video, and whose temporal stddev (4) is less than 10 pixel,166

prior to optimization. This reduces computation, as physical parameter + pose estimation is performed167

on only the most feasible tracks.168

Physical parameter estimation: The gradient-based BFGS (16) is used with numerical deriva-169

tives for physical parameter optimization. Although (6) provides an elegant method for analytical170

differentiation through contacts, we found it much harder to implement, and ultimately slower, than171

simple BFGS. Since the equations of motion considered here are planar, the z component of v0 is172

constrained to 0. The remaining parameters are learnable.173

On the first iteration, the initial position p0 is set to be the reprojection of the first 2D keypoint k̃0174

onto the z = 5 plane in world coordinates. This results in an initial position whose camera projection175

is the first keypoint. The initial velocity is v0 = [0, 0, 0]. We found these settings essential to avoid176

local minima in the incremental optimization.177

Camera pose estimation: BFGS is also used with finite differencing for the camera pose opti-178

mization step. The parametrization of R on pitch and yaw provides a smooth objective that is easy to179

optimize, whereas we found the PnP algorithm to result in large and not necessarily optimal jumps180

between steps. We initialize the camera pose parameters as α = 0, β = 0, and t = [0, 0, 0].181

Curriculum-based optimization: We use 25 input frames to start the optimization, adding 10182

frames per iteration until reaching the full length of the sequence.183

4.1 Environments184

Franka Emika Panda Robot: This sequence consists of a multi-joint robot arm (Franka Emika185

Panda) in a laboratory setting, where the goal is to find the end-effector’s 3D location and the camera186

pose relative to this. The end-effector was programmed to follow an archimedes spiral in an unknown187

2D plane. The spiral is described by: r = a + b · t ; θ = θ0 + ω · t where r, a, b, θ0, ω are188
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Bouncing ball 18.3, 44.2, 26.0 21.3, 45.9, 24.6 21.6, 26.8, 5.1 40.9, 25.7, 15.2

51.9, 24.9, 27.0 84.0, 27.3, 56.7 323.0, 8.6, 314.4 348.2, 6.8, 341.4

Robot arm end-effector 3.2, 78.6, 75.4 6.0, 73.9, 67.8 8.4, 75.0, 66.5 7.0, 71.6, 64.6

14.8, 76.2, 61.4 19.8, 75.4, 55.6 8.9, 22.1, 13.3 22.5, 13.6, 8.9

Best

Distractor
Distractor

Best Distractor
Distractor

Distractor

Distractor
Distractor

Figure 4: Left: Keypoint tracks propsed by a grid keypoint detector + KLT tracker (short or static
tracks not shown here for improved visualization). Right: Subset of the extracted keypoint tracks
(red) and projected fitted trajectories (blue), with the corresponding projection loglikelihood, entropy,
and their sum, over each plot.

unknown parameters, to be learned by V-SysId, and t is the time in seconds. A sequence of frames189

for this environment can be seen on Fig. 3, bottom. The video is 250 frames long, with a resolution190

of 640× 480.191

Simulated bouncing ball: This environment consists of a simulated bouncing ball with moving192

distractor objects. The bouncing ball follows the equation of motion:193 {
ay = −g , if y > floor
vx = vx0 ; vz = 0; vy = −ε vy , if y = floor

(5)

where a is the acceleration, v is the velocity, y is the ball height, ε ∈ [0, 1] is the restitution coefficient,194

and g = 9.8 is the gravity. The ball moves in the z = z0 plane with constant horizontal velocity, with195

the pose parameters R, t being responsible for correctly inferring the location of this plane relative196

to the camera. Photorealistic scenes are rendered in Blender following the Clevr protocol (28), and197

trajectories are rolled out using Euler integration.198

There are two distractor objects on the floor scene, one moving in a circle, and another in a straight199

line. This environment is used to obtain thorough quantitative results regarding the physical parameter200

and camera pose estimation abilities of V-SysId. To this end we generate 108 sequences along the201

following factors of variation: initial height; initial horizontal velocity; restitution coefficient; camera202

location; moving/static distractor objects. The physical parameters y0, vy0 , vx0 , η, and floor height203

are unknown, and discovered by the optimization process of V-SysId. The sequences are 120 frames204

long, with a resolution of 320× 240.205

4.2 Visualizing keypoint proposal and optimization206

We start by visually exploring the results obtained by V-SysId on the spiral robot and bouncing ball207

datasets. Fig. 3 shows the keypoints discovered for two of the scenes. These show that V-SysId208

correctly identifies objects of interest according to the given equation of motion.209

The keypoint proposal and selection process is visualized further in Fig. 4. Fig. 4 (left) shows the210

proposed keypoint tracks extracted at the proposal stage (Sec 3.2), and Fig. 4 (right) shows the211

results obtained by the optimization process (Sec 3.1) on a subset of these, ordered by their selection212

criterion score (the third number above each plot). The trajectory chosen by V-SysId according213

to the maximum entropy criterion is labeled as “Best”. These figures highlight several important214

points: Firstly, V-SysId is successful despite the large number of distractor keypoints from the various215
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Figure 5: Visualization of the curriculum-based optimization iterations for the spiral robot (top) and
bouncing ball (bottom) scenes. The red line corresponds to the extracted keypoint track and the
solid blue line corresponds to the trajectory with parameters estimated so far. The dashed blue line
corresponds to the predicted trajectory over the full length of the sequence, under the parameters
estimated so far. We can see that the curriculum-based optimization progressively improves the
physical parameter and pose estimates.

Distractors Restitution
coefficient (%)

Initial height
in 3D (%)

Camera
angle (◦)

With 3.8± 1.5 9.7± 4.0 8.0± 1.8
Without 2.7± 0.8 6.7± 3.0 9.9± 2.6

Table 1: Relative error (percentage) between the ground-truth simulation physical parameters and
camera pose, and those estimated by V-SysId, for the bouncing ball scene. Error bounds correspond
to a 95% confidence interval.

moving parts of the scene (most notable in the robot arm sequence). Secondly and crucially, the216

optimization process and the maximum entropy criterion are able to fit and identify the best trajectory,217

correctly discovering the object corresponding to the motion of interest.218

In order to further understand the curriculum-based optimization process, we visualize the optimiza-219

tion iterations of two keypoint tracks selected by V-SysId in Fig. 5. We can see that upon completion220

(2nd column), the orientation of the trajectory in 3D space is correctly identified by the model, and221

that each iteration progressively adjusts both the trajectory’s shape (parametrized by the physical222

parameters) and the camera pose. This leads to a stable optimization procedure where both physical223

parameters and camera pose are identified.224

4.3 Evaluating parameter estimation225

Even though the scale is generally unidentifiable (this and other limitations are discussed in Sec. A), in226

the case of a bouncing ball both the initial height and the restitution coefficient are exactly identifiable.227

This allows us to compare their learned values to the ground truth values used for the simulations. In228

addition, we can compare the camera angles identified to those used in simulation in order to evaluate229

the quality of the extrinsic camera calibration.230

The percentage error in restitution coefficient, initial height (distance to floor), and camera angle231

relative to the simulation ground-truth can be seen in Table 1. We can see that all parameters are232

found with a good degree of accuracy, with physical parameters being slightly more accurate than233

the camera pose. Notably, the errors are similar with and without moving distractors (within 95%234

confidence intervals), showing that V-SysId is able to correctly identify the object of interest even in235

the presence of distractor objects.236

In order to highlight the importance of the curriculum-based optimization strategy, we compare the237

projection likelihood using our incremental alternate optimization with alternate optimization using238

the full sequence at every step. Averaging over the bouncing ball scenes, we obtain projection RMSE239

(pixels) of −9.31 and −109.35, respectively. A similar decrease in performance was observed when240

using CEM and BO optimizers. This shows that gradually increasing sequence length and using a241

gradient-based optimizer is key to the convergence of V-SysId.242
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4.4 Tracking by supervised keypoint detection243

Once detected, the keypoints discovered by V-SysId can be used as pseudo-ground-truth to train a244

supervised keypoint detector. For the bouncing ball dataset, the training set consists of 2838 pseudo-245

labeled frames, and the test set consists of 948 hand-labeled frames from unseen scene configurations.246

For the robot dataset, the training set consists of 250 pseudo-labeled frames, and the test set consists247

of 150 hand-labeled frames from unseen end-effector positions. For the supervised keypoint detector,248

we use a fully convolutional neural network with 6 ReLU layers with 32 channels, with stride 2 on249

the 3rd layer, and 2 output channels with 2D softmax activation. These maps are converted to [x, y]250

coordinates by taking the softmax-weighted mean over the output coordinate grid, as per (22). The251

input images have a downsampling factor of 4 relative to the original frame resolutions, but we report252

the keypoint error in the original image space. We train the networks for 20 epochs with batch size253

16, and Adam (33) (learning rate 3× 10−4).254

Results are shown in Table 2. The supervised keypoint detector produces highly accurate detections,255

confirming the quality and usability of the keypoints discovered by V-SysId even on small datasets of256

high-resolution scenes.257

Environment RMSE (pixel distance)
Simulated bouncing ball (240× 320) 8.41± 1.50
Spiral robot (480× 640) 3.89± 0.45

Table 2: Detection error on the held-out test set of the keypoints extracted by the inference neural
network, after training using the keypoints discovered by V-SysId as supervision. Bounds correspond
to 95% confidence interval.

We recommend reading of the supplementary materials for additional ablations experiments, and an258

application of V-SysId to breathing rate estimation from video.259

4.5 ROI discovery in breathing videos using RANSAC260

Setup To further demonstrate the applicability of V-SysId to real world scenarios, we collected 8261

videos of people breathing under different pose, lightning, clothing and distractor settings, with the262

goal of discovering the relevant region region of the image and using it for breathing rate identification.263

The true breathing rate was obtained by manual annotation. Videos contain between 150 and 300264

frames, at 30 fps and 480x640 resolution.265

Unlike seminal work in video-based physiology and plethysmography (12), V-SysId does not require266

careful hand selection of the regions of interest and is robust to the existence of distractor motions in267

the scene. V-SysId simultaneously identifies the region of interest (here, the set of relevant keypoints,268

rather than a single one) corresponding to sinusoidal motion, and the underlying breathing rate.269

Results We have seen how single keypoint discovery can be achieved using V-SysId, but the270

algorithm can be easily modified to allow discovery of sets of keypoints constituting a region-of-271

interest. We use the chest video dataset as a prototypical application. The goal is to discover the272

keypoints in the video corresponding to sinusoidal motion. We start by extracting keypoint tracks as273

in Stage 1 of V-SysId (filtering out any tracks with a temporal stddev less than 0.7), and transform274

these 2D tracks into 1D timeseries by taking the projection onto the 1st PCA component of the275

timeseries (i.e. the 2D direction of highest variance). Each timeseries is standardised, and fit to a276

sinusoid as per Stage 2 of V-SysId (without the 3D component). In order to identify the best set of277

tracks, we use a RANSAC inlier count, by measuring the error between a track’s fitted sinusoid and278

all the other extracted tracks, and considering a track an inlier if the MSE is below 0.75. The best279

track is chosen according to a modified maximum entropy criterion in Stage 3, where the likelihood280

term is replaced by the inlier count. The ROI is defined as the set of inlier tracks of the best track.281

Fig. 6 (top) shows the keypoints discovered for the 8 videos, with Fig. 6 (bottom) showing the282

timeseries and its sinusoidal fit for one of the keypoints in the ROI. The model correctly identifies283

keypoints corresponding to the chest area, while ignoring distractor and lower-body keypoints.284

Comparing the respiratory periods identified with V-SysId with the annotated values results in an285

MSE of 0.016 (in seconds/breath). In contrast, a baseline that uses the mean of the true rates for all286

videos obtains an MSE of 0.085. These results demonstrate the accuracy of V-SysId for physical287
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parameter estimation from an unknown region of interest, using only the knowledge that the motion288

of interest is sinusoidal as supervision.289

Figure 6: Top: Green dots correspond to keypoints identified by V-SysId as relevant for determining
the breathing rate. The red dots are discarded keypoints. Note that some the videos contain distractors
that move in the scene (rollouts of scenes are shown in Fig. 10 in Appendix). V-SysId with RANSAC
is able to automatically discover regions of interest. Bottom: Timeseries (blue) and sinusoidal fit
(orange) of one keypoint in the ROI for each of the scenes.

5 Conclusion and future work290

This paper has introduced V-SysId, a 3-stage method for dynamics-constrained keypoint discovery291

and system identification, which alternates between maximum likelihood extrinsic camera calibration292

and maximum likelihood physical parameter estimation for motion tracks detected in video. We293

enhance the stability of this optimization through the inclusion of a curriculum-based optimisation294

strategy, alongside a maximum entropy selection criterion for keypoint identification. Future avenues295

of work include extensions to multiple interacting objects, rigid or fluid body dynamics from video,296

and incorporation with a neural network for material and volume inference from vision.297
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A Discussion: Challenges and limitations424

Scale unidentifiability Due to the projection operation kt(θ, R, t) = [p̃x,t/p̃z,t, p̃y,t/p̃z,t], the425

3D trajectory p1:T can only be determined up to a scale parameter. For this reason, we evaluate426

the correlation between the true- and learned parameters, not the error. This is also the metric used427

by GALILEO and Physics101 when doing physical parameter estimation from visual trajectories.428

Although scale unidentifiability leads to the existence of infinitely many solutions for θ and t, and429

therefore instability with joint optimization, our use of alternate optimization steps guarantees that430

the algorithm converges to a single solution, as θ and t are optimized conditioned on one another,431

not jointly (this is akin to the Expectation-Maximization algorithm, where a marginal distribution is432

maximized via alternate optimization of conditionals).433

Broken trajectories and occlusions: In settings where classical keypoint detectors are unreliable,434

one can either use state-of-the-art pretrained keypoint networks, like SuperPoint (13) and LF-Net435

(41), or pretrain an unsupervised keypoint discovery network (22; 38; 34). However, we found show436

that a simple grid keypoint detector yielded more reliable tracks than using classic (SIFT, ORB,437

FAST), or modern (SuperPoint, LF-Net) keypoint detectors.438

In settings where standard optical flow computation is unreliable, more recent models (eg. FlowNet439

(14)) could be used to provide flow estimates to the KLT tracker. More recent improvements to the440

KLT tracker (eg. CoMaL (43)) could also be used. The multi-stage, modular nature of our pipeline441

allows for the easy replacement of individual components, although we found standard optical flow442

computation to work very well in practice.443

Camera roll set to zero: We found that setting the camera roll angle to zero greatly stabilized the444

optimization procedure. While this might be perceived as too strong of a constraint on the model,445

in the vast majority of real settings the camera has zero roll (i.e. it’s rare for the camera to rotate446

around its projection axis). Therefore, imposing this constraint does not reduce the applicability of447

our method in the vast majority of cases, while providing improved results. Naturally, allowing roll448

optimization would make the model more general, but this is left as future work.449
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B V-SysId pseudocode450

Algorithm 1 V-SysId
Input: Video V of length T
Input: Equation of motion f of the object of interest
Input: KeypointTrackExtractor # function that outputs a set of keypoint track proposals
Output: Trajectory, physical parameters, and camera pose of the object of interest

# Get N keypoint track proposals
Tracks← KeypointTrackExtractor(V )

# Fit physical parameters and camera pose to trajectory
SelectionCriterion← [ ]
Params← [ ]
for n ∈ {1...N} do
k̃1:T ← Tracks[n]
Initialize α← 0, β ← 0, t← [0, 0, 0], v0 ← [0, 0, 0];
Initialize p0 as the projection of k̃0 onto the z = 5 plane in world coordinates;
Initialize η to some sensible initial values (setting dependent);
for t ∈ {1...T} do

θ ← argmaxθ p(k̃1:t|θ, R, t)
R, t← argmaxR,t p(k̃1:t|θ, R, t)

end for
Append {θ, R, t} to Params
Append the scalar p(k̃1:t|θ, R, t) +H(k̃1:T ) to SelectionCriterion

end for

# Trajectory selection
n∗ ← argmaxSelectionCriterion
k̃∗ = Tracks[n∗]
θ∗, R∗, t∗ = Params[n∗]
return k̃∗,θ∗, R∗, t∗
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C Evaluating future trajectory prediction451

We now evaluate the ability of the optimization process of V-SysId to perform accurate tracking452

and prediction given a sequence of correct keypoints. At each optimization iteration, we rollout the453

trajectory under the current parameters (i.e. those learned with the fraction of the sequence up to that454

iteration), and measure the prediction error relative to the observed keypoint track. This is done in455

hindsight only for the trajectory chosen by V-SysId, although it could equally be done for a keypoint456

sequence inferred by a test-time inference neural network. The results for the bouncing ball and spiral457

robot are shown in Fig. 7. The curves show that the optimization process quickly converges to correct458

system identification, leading to correct trajectory prediction after only 2 seconds of input.
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Figure 7: Left: Future trajectory prediction error under estimated parameters as a function of input
length.

459

D Comparison of keypoint detectors460

Here we provide a visual comparison of the trajectory proposals obtained using grid, ORB, LF-Net461

and SuperPoint keypoint extractors, in conjunction with a KLT tracker. Fig. 8 shows this comparison462

for the bouncing ball dataset (after filtering for short and static tracks). It can be seen that despite463

its simplicity, the grid extractor performs just as well as the more modern keypoint detectors, while464

running over an order of magnitude faster.465

grid orb

superpoint lf-net

Figure 8: Comparison of various keypoint extraction methods.
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E Further visualizations466

Figure 9: Comparison of various keypoints extractor and trackers on a bouncing ball scene.

Figure 10: Frames of breathing scenes containing distractors.
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