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Abstract

One of the key challenges in visual imitation learning is collecting large amounts
of expert demonstrations for a given task. While methods for collecting human
demonstrations are becoming easier with teleoperation methods and the use of low-
cost assistive tools, we often still require 100-1000 demonstrations for every task
to learn a visual representation and policy. To address this, we turn to an alternate
form of data that does not require task-specific demonstrations – play. Playing is a
fundamental method children use to learn a set of skills and behaviors and visual
representations in early learning. Importantly, play data is diverse, task-agnostic,
and relatively cheap to obtain. In this work, we propose to use playful interactions
in a self-supervised manner to learn visual representations for downstream tasks.
We collect 2 hours of playful data in 19 diverse environments and use self-predictive
learning to extract visual representations. Given these representations, we train
policies using imitation learning for two downstream tasks: Pushing and Stacking.
Our representations, which are trained from scratch, compare favorably against
ImageNet pretrained representations. Finally, we provide an experimental analysis
on the effects of different pretraining modes on downstream task learning. Playful
interaction data and models are publicly available on our project website 1.

1 Introduction

Imitation learning has proven to be a powerful approach to learn complex robotic skills from visual
observations [1, 2, 3, 4]. Recent works have shown how simple approaches like behavior cloning
can reliably replicate manipulation behaviors [5, 6, 7]. However, such methods are notoriously data
hungry, often requiring 100-1000 demonstrations during training. This paradigm of visual imitation
becomes even less practical when we need to learn a multitude of diverse skills for our robots.

But why does visual imitation require such large amounts of data? One hypothesis is that the
imitated policy not only needs to learn the desired behavior, but also the appropriate low-dimensional
representation for the high-dimensional visual inputs. Hence one path to efficient visual imitation is
to reduce the burden of representation learning by using pretrained representation learning models. In
the context of robotics, obtaining reliable pretraining is not straightforward. Standard vision datasets
[8, 9, 10] contain various object-centric biases while standard robotic datasets [11, 12] are often
lab-specific and contain their own robot-specific biases. This brings us to our central question – How
can we get data that matches the visual distribution of a given robot?

To answer this, we take inspiration from research in human development and look at an alternate
form of data: play [13, 14, 15, 16, 17]. From a pure data perspective, playful interactions possess
two key qualities. First, it would be cheap to obtain since play is task-agnostic, and it does not need
extensive curation or instruction to data collectors. Second, it would be naturally diverse since playful
interactions can be easily collected in unstructured environments.

In this work, we present a framework for representation learning that can scalably collect and learn
from playful interactions. First, we use reacher-grabber tools [18] built on top of DemoAT [19]

1https://sarahisyoung.github.io/play.html
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Figure 1: Our method uses two hours of unlabeled, diverse, and unstructured playful interaction data
to learn meaningful representations for downstream manipulation tasks such as Pushing and Stacking.

to collect two hours of diverse, self-guided play data in the wild. Equipped with this data, we
then use a novel self-supervised learning approach to learn a visual encoder that can extract visual
representations. On two downstream tasks, pushing and stacking, we report significant improvements
in behavior cloning metrics and outperform popular methods such as imitation from scratch [20],
data augmentation based imitation [19], ImageNet based pretraining and multi-task transfer [21, 22].
Against our strongest baseline, ImageNet pretraining, we show that play pretraining achieves up to
27% better MSE performance during test time. When pretrained on top of ImageNet initialization,
we achieve up to 38% better performance than training from scratch.

In summary, we present three contributions in this work. First, we propose a framework for collecting
playful visual interaction data in the wild. Second, we use self-prediction based representation
learning to learn meaningful task-agnostic visual representations. Third, we show that our represen-
tations learned on around 2 hours of play can outperform standard imitation-based approaches on
two manipulation tasks, pushing and stacking. Although the use of play data has been previously
explored in the context of simulated environments [23], to our knowledge this work is the first that
studies the use of this play data in real-world environments.

2 Approach

Playful Interactions: We define “playful interactions" as interactions of any kind in a real-world
environment using the DemoAT [19] framework. We asked four people to collect data, and these
users were untrained and given no information about the downstream tasks. The only guideline we
gave data collectors was to “walk around with the reacher-grabber tool and do whatever you want".
This includes walking and exploring the space, placing objects, as well as accidental drops. This
style of data is very different from our task-specific data, which only consists of expert, goal-oriented
trajectories. This kind of unstructured data is useful because it contains exploratory and sub-optimal
behaviors that are critical to learning generalizable and robust representations. More importantly, it
is much easier to obtain. Data collection can be done by any individual, even young children, and
existing data collected for other purposes can also serve as "playful interaction" data. Fig. 1 and
Fig. 2 display a few examples of playful interaction trajectories. We discuss data collection in more
detail in Appendix A.

Learning Visual Representations from Play: In our work, we aim to show that pretraining models
with playful interaction data is effective for downstream robotics tasks. We choose to use a BYOL [24]
style framework to pretrain and learn a visual representation. Unlike the instance-based method used
in BYOL, we explore a time-based [25, 26] approach to leverage the temporal association available
in videos. Instead of augmenting a copy of the same frame, we augment a frame a few timesteps
away in the same trajectory. Unlike [25], however, we do not require paired viewpoints of the same
observation. We learn a representation purely from comparing observations from a single viewpoint
at different timesteps. We find that a time-based approach is much more effective than the purely
instance-based method used in BYOL. The full setup is explained in Appendix B.
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Figure 2: Some play examples are more free-form and undirected, such as walking around in an
open space. Others contain repeated actions and suboptimal behaviors, such as dropping a bottle and
knocking it over. Most importantly, these play trajectories are collected without specific instructions,
making it diverse and easy to obtain.

Downstream Learning: After training on playful interaction data to learn a meaningful representa-
tion, we use this representation for downstream manipulation tasks. Unlike other works that utilize
self-supervised contrastive pretraining [27, 28, 29, 24], our network architecture builds on top of the
pretraining encoder and continues to update representation weights. More details in Appendix B.

Behavior Cloning: We learn a policy using behavior cloning [30, 31]. Each dataset contains
observation-action pairs D = {(It, at)}, where It is an image and at is the action to get from It to
It+1. Our task-training model takes in an observation image It ∈ R3×224×224 and learns a function
f(It, at) that maps observations It to actions at. Action labels are the relative changes in pose across
frames and are provided by the dataset. Our objective is to minimize a mean squared error (MSE)
loss computed on the predicted translation vectors.

3 Experiments

We designed our experiments to address four key questions. First, does self-supervised pretraining
with playful interactions capture a diverse set of environments to improve visual imitation? Second,
are play representations better than representations learned on ImageNet? Third, would task-specific
representations do as well as task-agnostic representations learned from play? Finally, can play
representations be combined with other modes of pretraining to get better performance? These final
two questions are addressed in Appendix E, and to further understand the effects of play data and
subsequent representation learning, we run a suite of ablations described in detail in Appendix F.

We evaluate our approach on two tasks, pushing and stacking. We use subsets of the 1000 pushing
and stacking examples provided in [19]. The goal of the pushing task is to slide an object across a flat
surface onto a red circle. The diverse dataset includes demonstrations of around 20 different objects
in many diverse scenes, which makes accurately manipulating objects especially challenging. The
prehensile stacking task requires grasping an object and placing it onto another object. We evaluate
our method using MSE on 100 held-out video demonstrations in unseen environments for both tasks.
Examples of pushing and stacking tasks are illustrated in Fig. 1.

Baselines: BC is a a behavior cloning policy trained from scratch, with data augmentations. AE and
VAE are baselines pretrained on playful interaction data via an Autoencoder/VAE rather than BYOL.
PLAY baselines are the models we train with playful interaction data. BC-OTHER is an ImageNet
initialized baseline pretrained on other tasks, to really see how effective playful interaction data is for
visual representation learning.

All baselines appended with -I are ImageNet pretrained baselines, where we load first a model with
weights that have been trained for ImageNet classification tasks, rather than from scratch. We then
use this pretrained model to run BC for our downstream manipulation tasks.

3



Table 1: Test Mean Squared Error of Playing and Stacking Task (lower is better).

Task BC AE VAE PLAY BC-I AE-I VAE-I PLAY-I BC-OTHER

Push 0.095 0.101 0.084 0.068 0.08 0.093 0.085 0.059 0.085
Stack 0.137 0.139 0.135 0.129 0.126 0.138 0.137 0.104 0.128

Does Training on Playful Interactions Lead to Good Representations? To test whether self-
supervised pretraining with playful interactions can learn a meaningful representation, we first train
a model using our collected playful interaction data via BYOL. Then, we load the learned weights
into our model to train on the downstream task. We train on 100 trajectories for both the pushing
and stacking task. If our playful interactions can learn effective visual representations, we expect
that this policy will outperform one where the downstream task is directly trained with BC from
scratch. As shown in the first (BC) and fourth (PLAY) columns of Table 1, we see that our play model
improve MSE from 0.095 to 0.068 in the pushing task and 0.137 to 0.129 in the stacking task. The
performance gap is apparent when we visually compare actions, shown in Fig. 4 in the Appendix.

How does Pretraining on Playful Interactions Compare to ImageNet Pretraining? We study
whether playful interactions are able to provide enough diversity and information in its learned
representation to surpass the performance of BC-I (BC with ImageNet pretraining). The BC-I
baseline is trained on significantly more data, but does not leverage playful interaction supervision,
so we hypothesize that the baseline likely learns a representation better suited for more vision-based
tasks. We first train a randomly initialized model to learn a representation from playful interaction
data (PLAY). Using this model, we then learn a BC policy on the pushing and stacking task. The
baseline BC-I is trained directly on the tasks with ImageNet-pretrained weights. Our results are
shown in the fourth (PLAY) and fifth (BC-I) columns of Table 1. We find that our method performs
better than ImageNet training for both the pushing and stacking stack. Qualitative results show
predicted actions on held-out test data in Fig. 4 in the Appendix. Comparing BC-I and PLAY, we see
there is an MSE of 0.08 to 0.068 in pushing and 0.126 to 0.129 in stacking. We further compare our
method to the BC baseline trained on twice the number of demonstrations to evaluate whether our
playful interactions can reduce the number of demonstrations needed to achieve good performance,
which we discuss in Appendix F.1.

3.1 Connecting to Real Robot Results

The experimental results in this work are limited to offline MSE evaluations. However, to highlight
our MSE evaluation results and contextualize it with real-robot evaluations, we can roughly base our
results on Young et al. [19]. They show that a MSE of 0.028 corresponds to a 87.5% success rate
for the pushing task and an MSE of 0.06 corresponds to 62.5% success rate for the stacking task
on the real robot. Experimental results in our work have higher MSE since we are operating in the
few-shot setting and hence use only a tenth of the pushing and stacking training data used in [19].
In the context of the experiments in this work, the BC baselines achieve a MSE of 0.08 and 0.126
for the pushing and stacking task respectively (Table 1), which both correspond to not being able to
complete either task. The best performing models trained with our method achieve a MSE of 0.059
and 0.104 for the pushing and stacking task respectively, which roughly correlate to successfully
solving the task around 60% for pushing and 29% for stacking.

4 Conclusion

We have presented an approach for learning downstream manipulation tasks via self-supervised
pretraining on easy-to-obtain playful interaction data. Our method improves the generalizability of
imitation learning baselines beyond simple data augmentations and provides significant improvements
to current baselines. We demonstrate that our pretraining method can achieve comparable results to
behavior cloning baselines using just half of the labeled task data. The success of our technique on
simple behavior cloning opens up many exciting avenues for further work to incorporate play into
more complex algorithms.
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A Playful Interaction Data Collection Details

Each data collector used the same setup consisting of a reacher grabber stick and a GoPro camera
and mount. Our guidelines are flexible enough that data collected from users are quite diverse.
For example, demonstrations range from just a few seconds long to up to 18 minutes. Shorter
demonstrations tend to be more task-based, while longer demonstrations typically involve many
repeated movements and include more undirected interactions such as walking across a room. In total,
we have 110 minutes and around 30,000 frames of playful interaction data. Our collected playful
interaction data will be publicly available.

B Encoder Architecture

The setup of our approach consists of a self-supervised pretraining phase and a downstream imitation
learning phase.

Following a BYOL approach, we train visual encoders q(·) and k(·) for the query and keys respectively
and use a momentum-based update for the query encoder, similar to BYOL. The query encoder q(·)
and key encoder k(·) each take in a single image It ∈ R3×224×224 and output a vector v. It, which is
an augmented version of the frame at timestep t, is fed into the query encoder, and It+3, which is an
augmented version of the frame at timestep t+ 3, is fed into the key encoder.

The play encoder architecture is as follows. Let Ck denote convolutional layers with k filters and Fk
denote fully connected layers of size k. The base encoder architecture we use for play pretraining
is simply the first three convolutional layers of the AlexNet: C64− C192− C384, followed by a
pooling layer and a MLP projection head of size F384− F128. We find that pretraining only the
first three convolutional layers rather than four or five layers improves the model’s ability to learn and
generalize during downstream task evaluation and is key to good performance. In Appendix F.2, we
provide analysis of pretraining at different layers.

The network architecture for downstream task learning consists of the base encoder used during
pretraining followed by two additional convolutional layers and one projection layer. During training,
weights from every layer are updated during task learning.

In Fig. 3, we show how we train via a time-based BYOL method with playful interactions. The
intermediate layer highlighted in purple is the representation learned during pretraining, and the
following two convolutional layers are trained only during task learning. The last layer is a projection
to the predicted action.

C Training Details

We pretrain with 2 hours of playful interaction data, which is around 30,000 frames. The encoders
are pretrained for 4,500 gradient steps with a batch size of 64. Then, the weights are loaded into the
model for training downstream tasks, and trained for around 1,000 gradient steps. In both phases, we
use a batch size of 64. During downstream tasks, we train on roughly 1400 images.

Our reported MSEs are the minimum error on our test dataset using the model with the best validation
loss, which we found by performing a small scale hyperparameter search. One of the parameters in
this search was the number of timesteps away frames should be in the self supervised pretraining.
We found that using frames too near did not contain much temporal information, while frames too
far apart often resulted in completely different scenes. Since supervised learning generally has
little variance, we chose to just run 3 seeds of the BC-I baseline experiments, which had a standard
deviation of 0.0009.

D Autoencoder and VAE Baselines

We find that generative methods such as AE and VAE do not work well. These baselines, which are
first pretrained with playful interaction data and then run on downstream tasks, perform similarly to
the BC baseline. We find that both AE and VAE are unable to reach the same level of accuracy as our
method during training, and thus does not perform as well on held-out data during test time. The
nature of the playful interaction data does not require a distribution to model actions, since there are
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Figure 3: The setup of our approach consists of a self-supervised pretraining phase and a downstream
imitation learning phase. (a) shows the first phase, where a representation is learned via time-based
self-supervised learning. Each pair of images is fed through an encoder and projected to an MLP
layer before computing similarity. (b) illustrates the encoder architecture for both phases. The purple
layer is the representation we optimize during pretraining. The gray region is the encoder architecture
used during playful interaction pretraining. The second phase of training (downstream task learning)
updates all layers shown and outputs a predicted action. We leave out the projection MLP layers in
this image for simplicity.

no decisions or points where there are diverging paths, and does not use temporal information, which
could be why these models are not as effective as temporal-based momentum encoders. We also find
that learning with instance discrimination does not improve performance and performs similarly to
the BC baseline. This could be due to the fact that BC itself includes data augmentations.

E More Experimental Results

Does Pretraining on Other Task Specific Data Perform Similarly to Pretraining on Play? We
further investigate whether the exploratory task-agnostic nature of playful interaction data is crucial
to the learned representation, or if pretraining on another task in the same action space is able to learn
a similarly effective representation. To this end, we compare a model pretrained on playful interaction
data (PLAY-I) and a model pretrained on a different task (BC-OTHER). Specifically, we test whether
a playful interaction-pretrained model outperforms a stack-pretrained model when trained on the
pushing downstream task, and vice versa for the stacking task. We note that stacking and pushing
have some structural similarity in actions, and that may improve those results. However, we find that
when learning the pushing task, pretraining on the stacking data leads to no visible improvement in
our experiments. We hypothesize that the pretraining phase is overfitting to the stacking data, and
thus does not learn a generalizable representation. We see similar results for the stacking task in the
last two columns of Table 1, where pretraining on a different task-specific dataset does not help the
model learn a good visual representation for training other downstream tasks. We also experimented
with pretraining on a completely different dataset, such as MIME, but found that the representations
learned are not effective, likely due to the difference in setup and viewpoint. This further shows the
effectiveness and importance of using playful interactions to learn a representation that can be used
to efficiently learn downstream tasks.

Can Play Pretraining be Combined with ImageNet Pretraining to Learn Better Representa-
tions? We also evaluate our method combined with state-of-the-art pretrained baselines. In this
set of experiments, we demonstrate that by combining our play-pretrained model with ImageNet
pretraining (PLAY-I), we can achieve even better performance: 0.059 and 0.104 for pushing and
stacking respectively. We first initialize our model with ImageNet weights before pretraining on
playful interaction data. We then train using BC on downstream tasks. As shown in the fifth and
second to last columns of Table 1, PLAY-I performs much better than the BC-I baseline, a 26%
improvement for pushing and 19% improvement for stacking. Furthermore, PLAY-I, combined with
ImageNet pretraining, outperforms PLAY (fourth column).
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F Additional Ablation Studies

F.1 Comparison with More Downstream Task Data

For both the pushing and stacking downstream task, we evaluate our method on 100 trajectories. We
have shown that our playful interaction pretraining method is able to significantly improve upon
baselines using the same number of expert pushing and stacking demonstrations. However, we also
want to evaluate how our method performs compared to using more expert data. To this end, we
test the baseline BC-I model on 200 trajectories and compare that to our playful interaction model
(PLAY) trained on only 100 trajectories.

Table 2: Comparison of Amount of Expert Demonstration Data

Task BC-I PLAY-I

# Expert demonstrations 100 200 100
Push 0.08 0.069 0.059
Stack 0.126 0.099 0.104

The pushing task trained with PLAY achieves an MSE of 0.059, which is 14% better than BC with
200 demonstrations despite training on only half the number of labeled data. In the stacking task,
our method (0.104) is able to surpass BC performance (0.126) and nearly match BC trained on 200
demonstrations (0.099). We note that in the stacking task, although our method is only able to nearly
match performance of using twice the amount of data, it is still a significant improvement upon the
baseline. Results are shown in Table 2.

F.2 Effect of Pretraining at Earlier Layers

We experiment with representation learning at earlier layers of the base encoder. Specifically, we
study the effects of pretraining a representation at the third, fourth, and last convolutional layers
shown in Fig. 3. We find that representation learning at earlier layers and updating all weights
during task learning is crucial to learning a good policy. When learning a representation at the final
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convolutional layer and fine-tuning only on the last linear layer(s), the policy is unable to learn
enough during fine-tuning to successfully complete the task, and performs worse than BC-I (0.093).
This suggests that the task-agnostic learned representation itself still needs signal from task-training.
If we update all the weights during task learning, however, the model is unable to generalize well
and achieves performance (0.081) similar to that of BC-I. Thus, learning a representation at an
earlier convolutional layer and updating all weights enables sufficient learning during imitation while
preserving the ability to generalize to test time scenarios. Fig. 5 shows the ablation study comparing
performance at different layers of pretraining for both downstream tasks.
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Figure 5: Learning comparisons between pretraining until different layers. We perform ablations
over pretraining with playful interaction data until the third, fourth, and fifth convolutional layer of
the model. Note that during downstream task training, we train on the full architecture regardless of
which layer we pretrained until. The y-axis is MSE error of predicted and ground truth actions in log
scale. We find that pretraining fewer layers significantly improves downstream task performance. We
hypothesize that this happens because during pretraining, since we are not optimizing for the same
objective as during downstream task learning, the model tends to overfit when trained on more layers.
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Figure 6: Learning comparisons between different amounts of play data. Note that the y-axis is MSE
error of predicted and ground truth actions in log scale. We see that more play data greatly improves
performance on downstream tasks, and diminishing improvements suggest that large-scale play data
is needed for improved accuracy.
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F.3 Amount of Play Data

We study the effects of the amount of play data on downstream task performance. We have 110
minutes of playful interaction videos split into around 30,000 frames and evaluate how important
this data is to task learning. Fig. 6 shows the performance of the pushing and stacking task when
pretrained on the following fractions of play data: 1, 10, 25, 50, and 100%. We note that as the
amount of playful interaction data we use increases, the MSE error decreases significantly, especially
when the amount of play data is low. Training with just 25% of our play data shows a 13% increase
in performance when compared to training with 1% of play data. However, in both the pushing and
stacking task, the improvements start to diminish as we approach two hours of data, suggesting that
large-scale playful interaction data is needed for further performance gains.
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