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Abstract

Computation in traditional deep learning models is determined by the explicit link-
ing of select primitives e.g. layers or blocks arranged in a computational graph.
Implicit neural models follow instead a declarative approach. First, a desiderata
relating inputs and outputs of a neural network is encoded into constraints; then,
a numerical method is applied to solve the resulting optimization problem as part
of the inference pass. Existing open–source software frameworks focus on ex-
plicit models and do not offer implementations of the numerical routines required
to study and benchmark this new class of models. We introduce TorchDyn, a
PyTorch library dedicated to implicit learning. TorchDyn provides a standard-
ized implementation of implicit models and the underlying numerical methods,
designed to serve as stable baselines. Beyond models and numerics, the library
further offers a collection of step–by–step tutorials and benchmarks designed to
accelerate research and improve the robustness of experimental evaluations.

1 Introduction

With foundational work now decades old [1]–[4], topics at the intersection of deep learning, differ-
ential equations and numerical optimization have been instrumental in the design of novel implicit
computational primitives: among them, neural differential equations [5]–[9], equilibrium and opti-
mization layers [9]–[11]. Differently from traditional deep neural architectures, formulating infer-
ence passes for an implicit model class is a two–stage procedure. First, a set of desired conditions
relating inputs and outputs of a parametric function are encoded into constraints, resulting in a con-
strained optimization problem. In example, we might require the output to be the minimizer of a
certain neural network fθ [11], or the solution of a differential equation with vector field fθ [5]. Due
to their ability to directly incorporate constraints and domain–specific priors, implicit models have
seen have seen extensive application in density estimation, prediction and control [12]–[20] and tra-
ditional deep learning tasks [10], where they have been shown to match baseline performance with
improved parameter efficiency. Despite these successes, implicit models remain challenging to im-
plement and test due to their reliance on the interplay between numerical methods and deep neural
architectures.

This work introduces TorchDyn2, a library dedicated to implicit models. The primary goal of
TorchDyn is to provide a level of abstraction suitable for research and applications of implicit mod-
els. This design allows researchers to selectively investigate specific properties of implicit learning
∗Equal contribution. Author order decided via a coin flip.
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Neural ODE

z : z = x0 +
∫
fθ(xt, x0, t)dt

Score–Matching Neural SDE

z : z = xT +
∫ [

at − b2tfθ(xt, t)
]
dt+

∫
btdWt

Equilibrium Model

z : z = fθ(z, x)

Optimization Model

z : z = argminz fθ(z, x)

Inference (sampling) in implicit models

Figure 1: Sampling z in implicit model equipped with neural network components fθ generally
involves approximating solutions to nonlinear problems with numerical methods. Depending on
solver characteristics, both training dynamics3of fθ as well as test–time generalization performance
can be affected. z : indicates the desiderata motivating each sampling procedure, i.e. searching for
z that satisfies a condition.

methods without having to reimplement numerical routines each time, while retaining compatibility
with the PyTorch ecosystem of baseline architectures.

To achieve this goal, TorchDyn provides modular implementations of both implicit neural network
architectures and GPU–accelerated, parallel numerical methods, which can be freely combined to
define explicit computation. This allows in example to rapidly prototype in the landscape of explicit
architectures defined by combinations of implicit models and numerical methods, some of which had
previously been individually studied as variants of ResNets or RNNs [21], [22]. However, the rapidly
exploding number of possible combinations of numerical methods and optimization problems that
can define an implicit model calls for a different, numerics–centric approach.

Numerical routines in TorchDyn are implemented as first–class, customizable and trainable
PyTorch [23] primitives. Beyond prototyping of implicit models, this allows in example direct
hybridization of solvers and neural networks [24], [25], direct training of deep neural solvers [26],
[27] or test–time ablations to determine the effect of numerical solver on task performance, all
with minimal implementation overhead. We also provide a functional interface for solving batched
optimization problems, regardless of whether they are related to the training or sampling of an im-
plicit model. In the following, we outline design principles, objectives and general structure of
TorchDyn.

2 Design and Objective of TorchDyn

Numerical Methods

Implicit Wrapper

Applications

Handler

Step ControlStepper

Model Sensitivity

Benchmarks Tutorials

fθ
nn.Module

Structure of TorchDyn

Figure 2: Elements and hierarchical struc-
ture of TorchDyn. Implicit wrappers rely
on numerical methods for their forward
pass and backward pass via a custom sen-
sitivity algorithm. Trainable elements are
indicated in blue.

The main objective of TorchDyn is to offer a
complete and intuitive access–point to the implicit
learning framework optimized to be interfaced with
the broader deep learning ecosystem. Similarly to
torchvision, torchaudio and HuggingFace
Transformers [28] for their specific domains, we design
TorchDyn to include stable implementations of base-
lines, as well as tutorials and example applications. We
follow core design principles of deep learning frame-
works such as PyTorch; namely, modular, object–
oriented, and with a focus on GPUs and batched op-
erations.

Due to the complexities and large number of design
decisions in deep learning practice [29], the research
community has been known to adopt and maintain spe-
cific, well–tested open–source reference implementa-
tions [30]. For implicit models, stable baselines are
even more important, as silent bugs can affect the un-
derlying numerical methods even when an implicit model appears to be performing well on a given

3In the case of score–matching Neural SDEs, the score network fθ is often trained directly on score labels
without solving the SDE, effectively decoupling sampling from training of the implicit model. Sampling and
in particular evaluating likelihoods requires accurate solutions of SDEs or corresponding ODE.
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task, confounding empirical analyses. TorchDyn provides a higher level of abstraction to enable
researchers in this domain to pursue extensive analyses of implicit models and solvers in learning
tasks, without the burden of having to reimplement high–overhead numerical suites.

3 The Elements of TorchDyn

We detail the core elements and structure of the library as shown in Figure 2.

3.1 Numerical methods

TorchDyn offers a suite for differential equation solving and root finding, as these are
the methods underpinning the majority of implicit models. As with existing libraries for
numerical methods, each algorithm is implemented as the combination of a handler e.g
odeint(·), root find(·) taking care of exceptions and surrounding operations, in combination with

Component Type

stepper nn.Module
step control methods nn.Module

handler (odeint, root find) Callable
models (e.g. vector field, root func) nn.Module

sensitivity algorithms autograd.Function
implicit wrappers (e.g. NeuralODE) nn.Module

Table 1: Types of TorchDyn modules.

steppers performing iterative updates
on a candidate solution.

Differently from other numerical
suites, TorchDyn steppers are mod-
ular PyTorch classes that expose by
default trainable elements, such as
Butcher tableau coefficents in differ-
ential equation solvers [31], and al-
low access to internal solver quanti-
ties that can be used during training
as regularizers [32]. Custom hybrid,
trainable [24], [33] or fully neural steppers can be directly plugged into the corresponding handler.
The handler is used internally during training of an implicit model, or can be accessed directly as
a functional interface mirroring general purpose numerical suites [14]. We further isolate other op-
erations within the handler, such as step control for root finding and differential equation solving,
which can also in principle be augmented by neural network components.

3.2 Models, sensitivity algorithms and utilities

Implicit models such as neural ordinary differential equations [5] (NeuralODE), equilibrium mod-
els [10] (EquilibriumLayer) or multiple shooting layers [9] (MultipleShootingLayer)
in TorchDyn are class wrappers around the required numerical method handlers. These wrappers
handle auxiliary operations such as state augmentation for integral4 losses and incorporate custom
sensitivity algorithms to compute gradients of the neural networks fθ embedded in the implicit
model. The users can determine the sensitivity algorithm to be used at training time: reverse–mode
through solver steps using PyTorch automatic differentiation, or continuous–time adjoint methods
(e.g. for NeuralODE) and implicit differentiation (for EquilibriumLayer). The numerical
suite is used internally in custom sensitivity algorithms.

Implicit primitives are then used in composite derivative models, such as continuous normalizing
flows (CNFs) [12], Hamiltonian networks [34] or Stable flows [35].

3.3 Tutorials and benchmarks

Model benchmarking and applications leverage the highest level of abstraction i.e. the neural ar-
chitecture fθ embedded in the implicit model is developed and then passed to a specific wrapper
to maximize performance in a given task. Pretrained models are saved as the neural network fθ
embedded or the wrapper directly. TorchDyn further offers a series of self–contained tutorials on
both its models and numerical methods.

4Integral loss functions are defined on the entire integration domain in continuous models such as neural
differential equations, ` :=

∫
T l(θ, z(t), t)dt. See [8] for further details on the derivation of the adjoint method

for this type of losses.
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1 vector_field = nn.Sequential(nn.Linear(2, 32),
2 nn.Tanh(),
3 nn.Linear(32, 2))
4
5 % Expose parameters of RungeKutta2 to autodiff
6
7 solver = RungeKutta2(alpha=.5, trainable=True)
8 system = NeuralODE(vector_field,
9 solver=solver)

10
11 target_solver = Heun()
12 target_system = NeuralODE(vector_field,
13 solver=target_solver)
14
15 x0 = torch.randn(100, 2)
16 t_span = torch.linspace(0, 20, 100)
17
18
19 opt = torch.optim.AdamW(solver.parameters())
20
21 % Training Loop
22 ...
23 t_eval, sol_source = system(x0, t_span)
24 t_eval, sol_target = target_system(x0, t_span)
25 loss = mse_loss(sol_source, sol_target)
26 ...

(a) [Left] general Butcher Tableau col-
lecting coefficients of numerical methods.
[Right] Tableau of second–order α family.
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(b) Interpolating between Midpoint
(α = 0.5) and Heun (α = 1) methods. .

Figure 3: Interpolating between Midpoint and Heun ODE solvers by direct minimization of a dis-
tance between their solution via reverse–mode automatic differentiation. On the left, the TorchDyn
API to expose solver parameters to the autodiff engine.

Example: gradient–based solver training Numerical methods incorporate a variety of heuristic
guidelines motivated by results in classical applications e.g. safety factors for adaptive timestepping
[36]. Hypersolvers [24], [27], [37] and work on seminorms [38] and SDE solvers for diffusions on
images [39] show that traditional guidelines might not always be optimal in the application domains
of implicit models. Given an appropriate parametrization of a solver family, exploration of optimal
solvers in an application domain can be in principle automated via optimization. Here, TorchDyn
provides a reasonably expressive framework in which researchers can experiment directly on the
solver. Figure 3 shows the API in TorchDyn to interpolate between two solvers via direct gradient
descent methods. Other metrics can be used to optimize a solver family, such as likelihoods in
generative modeling or control performance in optimal control.

4 Related Work and Conclusion

Software dependencies and ecosystem TorchDyn is embedded in Python and the PyTorch
ecosystem, and builds on torchsde [40] and torchcde [6]. TorchDyn retains compatibility
with PyTorch-Lightning [41], W&B [42] and other frameworks and tools for logging, training
loop handling, parallel and mixed–precision training.

Within the PyTorch ecosystem, torchdiffeq [5], torchsde [7], torchcde [6] offer a
selection of interpolation methods and solvers for ordinary, stochastic and controlled differential
equations. TorchDyn extends the suite of torchdiffeq and is integrated with torchsde and
torchcde. Outside of Python, the SciML ecosystem provides a Julia–based alternative with
a primary focus on scientific machine learning [43]. jaxopt [44] focuses on implicit differenti-
ation, in particular automating and optimizing computation of gradients via implicit differentiation
through fixed points.

We note that embedding numerical routines within neural networks is also being studied in the con-
text of algorithmic [45] or reasoning [46], [47] models. Although these share a similar declarative
nature with implicit models, integrating these in TorchDyn’s interface is beyond the scope of the
current iteration of the library, which focuses on the extensive literature of root finding and differ-
ential equation solvers. A similar design architecture could in principle be used as the core of new
libraries to be used for generic declarative neural models.
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