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Abstract

Searching for a path between two nodes in a graph is one of the most well-studied
and fundamental problems in computer science. In numerous domains such as
robotics, AI, or biology, practitioners develop search heuristics to accelerate their
pathfinding algorithms. However, it is a laborious and complex process to hand-
design heuristics based on the problem and the structure of a given use case. Here
we present PHIL (Path Heuristic with Imitation Learning), a novel neural architec-
ture and a training algorithm for discovering graph search and navigation heuristics
from data by leveraging recent advances in imitation learning and graph represen-
tation learning. At training time, we aggregate datasets of search trajectories and
ground-truth shortest path distances, which we use to train a specialized graph
neural network-based heuristic function using backpropagation through steps of
the pathfinding process. Our heuristic function learns graph embeddings useful
for inferring node distances, runs in constant time independent of graph sizes, and
can be easily incorporated in an algorithm such as A* at test time. Experiments
show that PHIL reduces the number of explored nodes compared to state-of-the-art
methods on benchmark datasets by 40.8% on average and allows for fast planning
in time-critical robotics domains.

1 Introduction

Search heuristics are essential in several domains, including robotics, AI, biology, and chemistry [1,
2, 3, 4, 5, 6]. For example, in robotics, complex robot geometries often yield slow collision checks,
and search algorithms are constrained by the robot’s onboard computation resources, requiring well-
performing search heuristics that visit as few nodes as possible [1, 4]. In AI, domain-specific search
heuristics are useful for improving the performance of inference engines operating on knowledge
bases [3, 5]. Search heuristics have been previously also developed to reduce search efforts in
protein-protein interaction networks [6] and in planning chemical reactions that can synthesize target
chemical products [2]. This broad set of applications underlines the importance of good search
heuristics that are applicable to a wide range of problems.

While there has been significant progress in designing search heuristics, it remains a challenging
problem. Classical approaches [7, 8] tend to hand-design search heuristics, which require domain
knowledge and a lot of trial and error. Domain-independent classical approaches [9, 10] develop
useful meta-heuristics; however, learning-based methods demonstrate that this process can be learned
from data. Learning-based methods face a different set of challenges. Firstly, the data distribution
is not i.i.d., as newly encountered graph nodes depend on past heuristic values, which means that
supervised learning-based methods [11, 12, 13, 14, 15] under-perform methods that take into account
the sequential decision making aspect of the problem [1]. Secondly, heuristics should run fast, with
ideally constant time complexity. Otherwise, the overall asymptotic time complexity of the search
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procedure could be increased. Finally, as the environment (search graph) sizes increase, reinforcement
learning-based heuristic learning approaches tend to perform poorly [16]. State-of-the-art imitation
learning-based methods can learn useful search heuristics [1]; however, these methods still rely on
feature-engineering for a specific domain and do not generally guarantee a constant time complexity
with respect to graph sizes.

Figure 1: Main components of PHIL: On the left, we roll-out and aggregate search trajectories from
the start node to the goal node. Each trajectory step contains a set of newly added fringe nodes with
bounded random subsets of their 1-hop neighborhoods and their oracle (h∗) distances to the goal
node. On the right, we use truncated backpropagation through time on each collected trajectory to
train hθ, where ĥ is the predicted distance between x2 and xg, and z2 is the updated state of the
memory.

In this paper, we propose Path Heuristic with Imitation Learning (PHIL, Figure 1), a framework that
extends the recent imitation learning-based heuristic search paradigm with a learnable explored graph
memory. This means that PHIL learns a representation that allows it to capture the structure of the so
far explored graph, so that it can then better select what node to explore next. We train our approach
to predict the oracle node-to-goal distances of graph nodes during search. Key to our approach is
a specialized graph neural network architecture, which allows us to apply PHIL to diverse graphs
from different domains and encodes search-specific inductive biases in a constant time complexity.

2 Preliminaries

Graph search. Suppose that we are given an unweighted connected graph G = (V, E), where V
is a set of nodes, and E a corresponding set of edges. Further suppose that each node i ∈ V has
corresponding features xi ∈ RDv , and each edge (i, j) ∈ E has features eij ∈ RDe . Assume that we
are also given a start node vs ∈ V and a goal node vg ∈ V . At any stage of our search algorithm,
we can partition the nodes of our graph into three sets as V = Vseen ∪ Vfringe ∪ Vunseen, where
Vseen are the nodes already explored, Vfringe are candidate nodes for exploration (i.e., all nodes
connected to any node in Vseen, but not yet in Vseen), and Vunseen is the rest of the graph. Each
expansion moves a node from Vfringe to Vseen, and adds the neighbors of the given node from
Vunseen to Vfringe. We call the set of newly added fringe nodes Vnew at each search step. At the
start of the search procedure, Vseen = {vs} and we expand the nodes until vg is encountered (i.e.,
until vg ∈ Vseen).

Greedy best-first search. We can perform greedy best-first search using a greedy fringe expansion
policy, such that we always expand the node v ∈ Vfringe that minimizes h(v, vg). Here, h :
V × V −→ R is a tailored heuristic function for a given use case. In our work, we are interested
in learning a function h that predicts shortest path lengths, this way minimizing |Vseen| in a greedy
best-first search regime.

Imitation of perfect heuristics. Partially observable Markov decision processes (POMDPs) are
a suitable framework to describe the problem of learning search heuristics [1]. We can have s =
(Vseen,Vfringe,Vunseen) as our state, an action a ∈ A corresponds to moving a node from Vfringe
to Vseen, and the observations o ∈ O are the features of newly included nodes in Vfringe. We also
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define a history ψ ∈ Ψ as a sequence of observations ψ = o1, o2, o3, .... Our work leverages the
observation that using a heuristic function during greedy best-first search that correctly determines
the length of the shortest path between fringe nodes and the goal node will also yield minimal |Vseen|.
For training, we adopt a perfect heuristic h∗, similar to [1], which has full information about s during
search. Such oracle can provide ground-truth distances h∗(s, v, vg), where v ∈ Vfringe. To conclude,
we define a greedy best-first search policy πθ that uses a parameterized heuristic hθ to expand nodes
from Vfringe with minimal heuristic values.

3 Approach
Training objective. With the aim of minimizing |Vseen| after search, our goal is to train a parameter-
ized heuristic function hθ : Ψ× V × V −→ R to predict ground-truth node distances h∗ and use hθ
within a greedy best-first policy πθ at test time. More specifically, we assume access to a distribution
over graphs PG , a start-goal node distribution Pvsg (· |G), and a time horizon T . Moreover, we assume
a joint state-history distribution s, ψ ∼ Ps(· | G, t, πθ, vs, vg), where Ps represents the probability
our search being in state s, at time 0 ≤ t ≤ T on graph G with pathfinding problem (vs, vg), with a
greedy best-first search policy πθ using heuristic hθ. Hence, our goal is minimizing:

L(θ) = E
G∼PG ,

(vs,vg)∼Pvsg

t∼U(0,...,T ),
s,ψ∼Ps

[ 1

|Vnew|
∑

v∈Vnew

(h∗(s, v, vg)− hθ(ψ, v, vg))2
]

(1)

Imitation learning algorithm. The high-level idea of our algorithm (Appendix C) is that we
aggregate trajectories of search traces (i.e., sequences of new fringe nodes) and use truncated
backpropagation through time to optimize hθ after each data-collection step. In particular, after
sampling a graph G and a search problem vs, vg, we execute our greedy learned policy πθ induced
by hθ for t ∼ U(0, . . . , T − tτ ) expansions, where T is the episode time horizon, and tτ is the
roll-out length. We obtain a new state s = (V0

seen,V0
fringe,V0

unseen), and an initial memory state
zt. Afterward, we execute/roll-out for tτ steps our mixture policy πmix, which is obtained by
probabilistically blending πθ and the greedy best-first policy induced by the oracle heuristic π∗. In
a roll-out, we collect sequences of new fringe nodes, together with their ground-truth distances to
the goal vg , given by h∗. Once the roll-out is complete, we aggregate the obtained trajectory and the
initial state for the following optimization using backpropagation through time.

Algorithm 1: Heuristic func. (hθ) forward pass
Obtain xi, xj , eij , xg zt;
xi ← f(xi, xg, DEUC(xi, xg), DCOS(xi, xg));
xj ← f(xj , xg, DEUC(xj , xg), DCOS(xj , xg));
gi ← φ(xi,⊕j∈Ni

γ(xi, xj , eij));
g′i, zi,t+1 ← GRU(gi, zt);
zt+1 ← zi,t+1;
ĥi ← MLP(g′i, xg);

return ĥi, zt+1;

Recurrent GNN architecture. In each
forward pass, hθ obtains a set of new
fringe nodes Vnew, the goal node vg, and
the memory zt at time step t. We repre-
sent each node in Vnew using its features
xi ∈ RDv , and likewise the goal node vg
using its features xg ∈ RDv . Further, for
each i ∈ Vnew, we uniformly sample an
n ∈ N≥0 bounded set of nodes present in
the 1-hop neighborhood of i, calling this set
Ni, with |Ni| ≤ n. This sampling step pro-
duces a set of neighboring node features,
where each j ∈ Ni has features xj ∈ RDv , and corresponding edge features eij ∈ RDe .

hθ forward pass. In Algorithm 1, f, φ, γ,GRU[17],MLP are each parameterised differentiable
functions, with φ, γ representing the update and message functions [18] of a graph neural network,
respectively. In our forward pass, using the function f , we first project xi, xj into a node embedding
space, together with the goal features xg , and their Euclidean (DEUC ) and cosine distances (DCOS).
After that, using a 1-layer GNN, we perform a single convolution over each xi and the corresponding
neighborhood Ni, to obtain gi. Our graph convolution processing step allows us to easily incorporate
edge features and work with variable sizes of Ni. After the graph convolution, we apply the GRU
module over each embedding gi to obtain hidden states zi,t+1, and new embeddings g′i. We compute
the sample mean of zi,t+1 for each node i ∈ Vnew to obtain a new hidden state zt+1, and process g′i
with xg using an MLP to compute the distances between the graph nodes.

Permutation invariant Vnew embedding. There is a trade-off between processing new fringe nodes
in batch, as in Algorithm 1, and processing them sequentially. Namely, when we process the nodes in
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batch, we do not use the in-batch observations to predict batch node values, which means that zt is
slightly outdated. On the other hand, in PHIL, batch processing allows us to compute the heuristic
values of all v ∈ Vnew in parallel on a GPU and preserves the memory’s permutation invariance with
respect to nodes in Vnew. This approach provides additional scalability as we can process values in
parallel and PHIL does not have to infer permutation invariance in Vnew from data.

4 Experiments

Heuristic search in grids. In this section, we evaluate PHIL on 8, 200 × 200 8-connected grid
graph-based benchmark datasets by Bhardwaj et al. [1]. Each dataset contains 200 training graphs,
70 validation graphs, and 100 test graphs. Example graphs from each dataset can be found in Table 1.
For a detailed description of datasets and baselines, please refer to Appendix F.

Dataset Graph Examples SaIL SL CEM QL heuc hman A* MHA* PHIL

Alternating gaps 1.000 11.077 1.077 25.641 25.641 25.641 25.641 25.641 0.615

Single Bugtrap 1.000 1.354 0.361 6.329 1.165 1.215 6.329 1.772 0.544

Shifting gaps 1.000 4.462 9.615 9.615 4.865 5.663 9.615 7.731 0.260

Forest 1.000 1.194 1.333 3.361 1.139 1.194 27.778 2.083 0.778

Bugtrap+Forest 1.000 2.612 1.238 6.803 2.789 2.293 6.803 3.177 0.810

Gaps+Forest 1.000 4.525 4.525 4.525 4.525 4.525 4.525 4.525 0.213

Mazes 1.000 2.311 4.650 3.874 1.796 1.660 9.709 2.709 0.495

Multiple Bugtraps 1.000 1.002 2.088 1.743 1.353 1.288 2.088 1.829 0.382

Table 1: The number of expanded graph nodes of PHIL with respect to SaIL. We can observe that out
of all baselines, SaIL performs best. PHIL outperforms SaIL by 48.8% on average over all datasets,
with a maximal search effort reduction of 78.7% in the Gaps+Forest dataset.
As we can see in Table 1, PHIL outperforms the best baseline (SaIL) on all datasets, with an average
reduction of explored nodes before vg is found of 48.8%. Even with CEM performing better than
PHIL on Single Bugtrap, PHIL reduces the necessary search effort compared with the best baseline
on each dataset by 40.8% on average. Qualitatively, observing Figure 2, we can attribute these results
to PHIL’s ability to reduce the redundancy in explored nodes during a search, as can be seen in
Appendix A. Further, PHIL converges in up to N = 36 iterations, with tτ = 32 (i.e., after observing
less than N ∗ tτ ∗max(|Vnew|) ≈ 9, 216 shortest path distances, where we take max(|Vnew|) = 8
as the maximal size of Vnew). According to figures reported in [1], this is approximately 5× less data
than it takes for SaIL to converge. Although neither the SaIL or PHIL code-bases were optimized for
runtime speed, we found that our implementation of PHIL runs about 7× faster than the publicly
available implementation of SaIL on the Gaps+Forest dataset.

Dataset SL A* heuc BFS PHIL Shortest path
Room simple 1.124 76.052 1.000 291.888 0.978 0.938

Room adversarial 2.022 67.215 1.000 238.768 0.895 0.853

Table 2: Results of PHIL in the context of planning for indoor UAV flight. PHIL outperforms
all baselines in both the room simple and room adversarial environments while remaining close
performance-wise to the optimal number of expansions.
Planning for drone flight. In our final experiment, we use PHIL to plan collision-free paths in a
practical drone flight use case within an indoor environment. For more detail about each environment,
please refer to the supplementary material. We discretize the environments into 3D grid graphs of
size 50 × 50 × 25, and randomly remove 5 sub-graphs of size 5 × 5 × 5 both during training and
testing, this way simulating real-life planning scenarios with random obstacles. In Table 2 we report
the ratio of expanded nodes with respect to heuc. As we can observe in Table 2, PHIL outperforms all
baselines in both environments. Interestingly, PHIL expands only approximately 4.2% more nodes
in the simple room than least possible and 4.9% more in the adversarial room case. The same figures
for the greedy method (heuc) are 6.6% and 17.2%, respectively. These results indicate that PHIL
is capable of learning planning strategies that are close to optimal in both simple and adversarial
graphs2, while the performance of naive heuristics degrades.

2We provide a video demonstration of PHIL running in room adversarial: https://cutt.ly/eniu5ax.

4

https://cutt.ly/eniu5ax


References
[1] Mohak Bhardwaj, Sanjiban Choudhury, and Sebastian Scherer. “Learning heuristic search via

imitation”. In: Conference on Robot Learning. 2017.
[2] Binghong Chen et al. “Retro*: Learning retrosynthetic planning with neural guided A* search”.

In: ICML. 2020.
[3] Martin Gebser et al. “Domain-specific heuristics in answer set programming”. In: AAAI. 2013.
[4] Thi Thoa Mac et al. “Heuristic approaches in robot path planning: A survey”. In: Robotics and

Autonomous Systems. 2016.
[5] Abhishek Sharma and Keith M. Goolsbey. “Identifying useful inference paths in large com-

monsense knowledge bases by retrograde analysis”. In: AAAI. 2017.
[6] Cheng-Yu Yeh et al. “Pathway detection from protein interaction networks and gene expression

data using color-coding methods and A* search algorithms”. In: The Scientific World booktitle.
2012.

[7] Danish Khalidi, Dhaval Gujarathi, and Indranil Saha. “T*: A heuristic search based path
planning algorithm for temporal logic specifications”. In: ICRA. 2020.

[8] Bhargav Adabala and Zlatan Ajanovic. “A multi-heuristic search-based motion planning
for autonomous parking”. In: 30th International Conference on Automated Planning and
Scheduling: Planning and Robotics Workshop. 2020.

[9] Nir Lipovetzky and Hector Geffner. “Best-first width search: Exploration and exploitation in
classical planning”. In: Thirty-First AAAI Conference on Artificial Intelligence. 2017.

[10] Florent Teichteil-Königsbuch, Miquel Ramırez, and Nir Lipovetzky. “Boundary Extension
Features for Width-Based Planning with Simulators on Continuous-State Domains.” In: IJCAI.
2020, pp. 4183–4189.

[11] Jes ús Virseda, Daniel Borrajo, and Vidal Alcázar. “Learning heuristic functions for cost-based
planning”. In: Planning and Learning. 2013.

[12] Christopher Makoto Wilt and Wheeler Ruml. “Building a heuristic for greedy search.” In:
SOCS. 2015.

[13] Caelan Reed Garrett, Leslie Pack Kaelbling, and Tomás Lozano-Pérez. “Learning to rank for
synthesizing planning heuristics”. In: IJCAI. 2016.

[14] Jordan Thayer, Austin Dionne, and Wheeler Ruml. “Learning inadmissible heuristics dur-
ing search”. In: Proceedings of the International Conference on Automated Planning and
Scheduling. 2011.

[15] Soonkyum Kim and Byungchul An. “Learning heuristic A*: efficient graph search using neural
network”. In: ICRA. 2020.

[16] Sanjiban Choudhury et al. “Data-driven planning via imitation learning”. In: The International
Journal of Robotics Research 37.13-14 (2018), pp. 1632–1672.

[17] Kyunghyun Cho et al. “Learning phrase representations using rnn encoder–decoder for statisti-
cal machine translation”. In: EMNLP. 2014.

[18] Justin Gilmer et al. “Neural message passing for quantum chemistry”. In: ICML. 2017.
[19] Weihua Hu et al. “Open graph benchmark: Datasets for machine learning on graphs”. In:

NeurIPS. 2020.
[20] Prithviraj Sen et al. “Collective classification in network data”. In: AI magazine. 2008.
[21] Oleksandr Shchur et al. “Pitfalls of graph neural network evaluation”. In: arXiv preprint

arXiv:1811.05868. 2018.
[22] Marinka Zitnik and Jure Leskovec. “Predicting multicellular function through multi-layer

tissue networks”. In: Bioinformatics. 2017.
[23] Christopher Morris et al. “Tudataset: A collection of benchmark datasets for learning with

graphs”. In: arXiv preprint arXiv:2007.08663. 2020.
[24] Geoff Boeing. “OSMnx: New methods for acquiring, constructing, analyzing, and visualizing

complex street networks”. In: Computers, Environment and Urban Systems. 2017.
[25] Miltiadis Allamanis. “The adverse effects of code duplication in machine learning models

of code”. In: ACM SIGPLAN International Symposium on New Ideas, New Paradigms, and
Reflections on Programming and Software. 2019.

[26] Zhenqin Wu et al. “Moleculenet: a benchmark for molecular machine learning”. In: Chemical
science. 2018.

5



[27] Jiaxuan You, Rex Ying, and Jure Leskovec. “Position-aware graph neural networks”. In: ICML.
2019.

[28] Aditya Grover and Jure Leskovec. “node2vec: Scalable feature learning for networks”. In:
ACM SIGKDD. 2016.

[29] Stuart Russell and Peter Norvig. Artificial intelligence: a modern approach. 2002.
[30] Sandip Aine et al. “Multi-heuristic A*”. In: The International booktitle of Robotics Research.

2016.
[31] Edo Cohen-Karlik, Avichai Ben David, and Amir Globerson. “Regularizing towards permuta-

tion invariance in recurrent models”. In: NeurIPS. 2020.
[32] Volodymyr Mnih et al. “Playing atari with deep reinforcement learning”. In: NeurIPS Deep

Learning Workshop. 2013.
[33] Pieter-Tjerk De Boer et al. “A tutorial on the cross-entropy method”. In: Annals of operations

research. 2005.
[34] E. Rohmer, S. P. N. Singh, and M. Freese. “Coppeliasim (formerly v-rep): a versatile and

scalable robot simulation framework”. In: IROS. 2013.
[35] Daniel Lenton et al. “Ivy: Templated deep learning for inter-framework portability”. In: arXiv

preprint arXiv:2102.02886. 2021.
[36] Petar Velickovic et al. “Graph attention networks”. In: ICLR. 2018.
[37] Guohao Li et al. “Deepergcn: All you need to train deeper gcns”. In: arXiv preprint

arXiv:2006.07739. 2020.
[38] Petar Velickovic et al. “Neural execution of graph algorithms”. In: ICLR. 2020.
[39] Petar Velickovic. TikZ. https://github.com/PetarV-/TikZ, last accessed on 01/6/21.

6

https://github.com/PetarV-/TikZ

	Introduction
	Preliminaries
	Approach
	Experiments

