
Neural NID Rules

Luca Viano
EPFL

luca.viano@epfl.ch

Johanni Brea
EPFL

johanni.brea@epfl.ch

Abstract

Abstract object properties and their relations are deeply rooted in human common
sense, allowing people to predict the dynamics of the world even in situations that
are novel but governed by familiar laws of physics. Standard machine learning
models in model-based reinforcement learning are inadequate to generalize in this
way. Inspired by the classic framework of noisy indeterministic deictic (NID) rules,
we introduce here Neural NID, a method that learns abstract object properties and
relations between objects with a suitably regularized graph neural network. We
validate the greater generalization capability of Neural NID on simple benchmarks
specifically designed to assess the transition dynamics learned by the model.

1 Introduction

Human cognition relies on core knowledge about space, actions and objects [17]. Whereas actions
naturally occur in traditional Reinforcement Learning [19] and inductive biases related e.g. to
translation invariance in space are straightforward to specify, it is less clear how to implement
core knowledge about objects. Whereas abstract (symbolic) representations of objects were already
popular in classical Artificial Intelligence approaches [13] or Relational Reinforcement Learning
[5], recent works focus on learning object-centric representations from raw sensory input [9, 20, 2,
1, 10, 12, 8, 4, 21, 22, 7, 3, 6, 18]. Advantages of object-centric approaches are exemplified in the
classic framework of Noisy Indeterministic Deictic (NID) rules [14, 11]. This framework allows to
describe the agent environment by means of only few object properties and relations, neglecting all
the irrelevant ones. In particular, the idea of representing a scene only by means of the relevant object
properties and useful relations among them allows for (i) immediate generalization across objects
sharing the same relevant properties and (ii) generalization across tasks that can be described by the
same relational predicates.

Consider, for example, the situation depicted in Figure 1a. The yellow and the green objects share the
same spherical shape. It is the only property a human would use to predict if an object can roll down
from the plane if left unconstrained. For example, the frame sequence shown in the right column of
Figure 1a can be easily predicted by a human after having seen the frame sequence on the left. With
NID rules a machine can also learn to make correct predictions when given the example on the left in
1a and appropriate object properties (shape and whether the object is on the right or the left slope).

Classic methods based on NID rules rely on human expertise because the relevant properties and
relations are required as input. In contrast, the recent neural network approaches rely on a “repre-
sentation” feedforward neural network to extract relevant properties from raw observations and an
“interaction” graph neural network to model relations between objects [2, 8].

Although the neural network approaches alleviate the need for human expertise, we argue here that
they bear undesirable symmetries. The basic argument is the following: in a setting where we want to
predict the transformation f(X,C) of an object X in a context C with a representation network r(X)
followed by prediction network g(r(X), C), i.e. f(X,C) ≈ g(r(X), C)), two objects A and B that
behave the same g(r(A),C1) = g(r(B),C1) in some context C1 may have different representations

Physical Reasoning and Inductive Biases for the Real World at NeurIPS 2021.

r(A) 6= r(B) and therefore potentially differing predictions g(r(A),C2) 6= g(r(B),C2) in another
context C2. In other words, these systems have a symmetry characterised by the invariant set of
representation networks {r|g(r(A),C1) = g(r(B),C1)}. For efficient generalization, it is desirable
to break this symmetry with a prior that reflects the common sense reasoning “if it looks like a
duck and walks like a duck, it is a duck”. Here we propose a prior to break this symmetry and we
investigate its effectiveness empirically. Additionally we show how our neural network approach
relates to classical NID rules.

2 Neural NID Rules

NID rules [14, 11] consist of a formalism to describe the transition dynamics in relational domains.
In these domains, one assumes access to an action set A, to an object set O, to a property set
P = {pj : O → {True,False}}j , to a function (or relation) set F =

{
fj : Okj → {True,False}

}
j

where kj is an integer denoting how many objects are required as input of the jth function in F . A
rule r is defined as

ar(X) : φr(X)→


pr1 : Ωr1(X)
...

...
prm : Ωrm(X)

(1)

where X is a subset of the object setO, ar(X) indicates that action ar is applied, φr(X) is an abstract
boolean state context described in terms of properties and functions applied to the objects X (e.g.
is_round(object_1) ∧ on(object_1, left_plane)), and Ωrz(X) is an outcome occurring with probability
prz for all z ∈ {1, . . . ,m}. The set P is designed such that all the irrelevant object properties are
ignored. Thus, NID rules validly apply to contexts of unseen objects but with known properties and
relations. The main drawback of NID rules is the requirement of handcrafting the properties and
functions sets F and P .

With our Neural NID we bypass this requirement using an encoder network f enc to learn properties
and a graph neural network f edge to learn relations. We assume the sensory state xt at time t of
an agent consists of a set of low-level object representations xt = (o1, . . . , oNt

) where Nt is the
currently available number of objects. The object representations oi could be images or features like
shape, color or position. The goal is to learn with as few observations as possible an accurate transition
model T such that xt+1 ≈ T (at, xt), where at are the agent’s actions. To get efficient generalization
we want to equip the model with an inductive bias that favors grouped abstract representations for
objects that behave the same under all training observations, even if they have different low-level
representations.

We split the transition model into two parts: a transition map Ωz(xt, i) that predicts the next low-level
representation of object i in state xt under transition z and a transition selector P (z|xt, i). This split
into transition selector and transition map is inspired by the NID rules (see Eq. 1). In contrast to the
NID rules, however, both parts are learned from experience.

2.1 The Inclined Plane Domain

As a proof of concept we study a simple domain with rollable and non-rollable objects on inclined
planes (see Fig. 1). For most experiments we do not include any actions in this domain (but see
Appendix B). The low-level object representations consist of the color and the x-coordinate of the
objects, i.e. features that are uninformative about rollability and the descending direction of the slope.
Rollable objects move one step to the left when they are on the left plane and one step to the right
otherwise, unless there is a non-rollable object that blocks their way. The transition model needs to
discover these rules from experience.

In the following, o ∈ O and p ∈ P are integers encoding the color and the x-coordinate of an object,
respectively; eo, ep denotes the corresponding one hot encoded vectors. We consider as input at
time step t a tensor xt ∈ R|O|×|P|. For a fixed color index o, the tensor slice xt[o] is a probability
density function over the spatial domain that represents how likely it is to find an object in a particular
position. We denote as xt[o, p] the probability of finding an object of color o in position p. Bold
quantities, e.g. v are multidimensional tensors. We denote access to tensor entries with squared
brackets, e.g v[1]. We assume that all the other dimensions that are not explicitly indexed are kept.

2

For the Inclined Plane Domain the transition map {Ωz : R|O|×|P| → R|O|×|P|}z is a collection of
functions implemented via convolutional filters (see Appendix A). Below we focus mostly on the
transition selector which we write here as P (z|x, o, p) for an object with color o at x-coordinate p in
context x. The network’s prediction for the next x-coordinate p′ of an object of color o in position p
is given by a distribution x̂t+1[o], where

x̃t+1[o, p′] =

m∑
zt=1

P (zt|xt, o, p)Ωzt(xt)[o, p
′] x̂t+1[o] = softmax(x̃t+1[o]) . (2)

Note that averaging over all possible transitions is expected to work in deterministic domains like the
Inclined Plane Domain (an alternative would be to take the arg-max of P (zt|xt, o, p) or sampling).
In general stochastic domains it may be needed during training to include information from xt+1

while performing inference on zt.

2.2 The Transition Selector

The transition selector can be seen as a Graph Neural Network. We define an encoding function
such that θt[o, p] = f enc(o, p). The interactions between objects are modeled using an edge function:
Φt[o1, o2, p] = f edge(xt[o1],xt[o2], p). The tensor is used to update the encoded object state with
a node function fnode: θ̃t[o, p] = fnode(θt[o, p],

∑
õ 6=o Φt[o, õ, p]). Finally, we get the output

probability with a decoding function fdec: P (zt|xt, o, p) = fdec(θ̃t[o, p]).

A crucial requirement for efficient generalization is the design and training of f enc such that low-level
object representations are mapped to abstract representations that are relevant to predict the transitions.
For example in the Inclined Plane Domain a useful encoding would map the low-level “color and
x-position” representation to an abstract “shape and on left or on right plane” representation. In
addition, efficient generalization relies also on the relational dynamics between rollable and blocking
objects that should be learned from experience by fnode.

We learn object properties with f enc implemented as a particular fully connected architecture of
the form θt[o, p] = σ(softmax(Concat(eo, ep)TQ)V)W where σ denotes a sigmoid function,
W ∈ Rd1×dP

,Q ∈ R(|O|+|P|)×K and V ∈ RK×d1

, where softmax acts row-wise. The idea behind
the design of f enc is to extract abstract object properties. We can think of the K rows of V as vectors
representing learned abstract properties. The softmax layer outputs an object-dependent probability
distribution over those property vectors.

Note that the first layer of this architecture defines a symmetry. Suppose we have an ob-
ject of color o1 at x-coordinate p1 and a second object of color o2 at p2. Then, defining
softmax(Concat(eoi , epi

)TQ) := Pi for i = 1, 2, it is possible that P1V = P2V even if P1 6= P2.
To avoid these cases we break the induced symmetry with entropy regularization terms that favor
solutions with P1 = P2. Thus, the training loss is given by the binary cross entropy (BCE) with
entropy regularizers for f enc,

L = BCE(xt+1, x̂t+1)− λ1
|O|+|P|∑

i=1

K∑
k=1

P (k, i) logP (k|i)− λ2
K∑

k=1

P (k) logP (k) . (3)

where P (k|i) is the kth entry of P i, P (k, i) = P (k|i) 1
|O|+|P| , P (k) =

∑
i P (k, i).

3 Experiments

In our experiments with the Inclined Plane Domain, we seek an empirical answer to the two following
questions: (i) Can Neural NID effectively generalize in the setting described in Figure 1a? (ii) Is
the generalization of Neural NID connected to learning abstract properties as conjectured in the
introduction? To address the first question we train Neural NID with different trajectories of objects
of different color starting at different initial x-coordinates. Some of the objects appear in the training
set only on one of the two slopes, whereas others appear on both sides of the slope. After that, we test
the model on rollouts sampled from all possible initial conditions, i.e. all objects on all slopes. The
cumulative error of the predictions are shown in Figure 1b. Neural NID attains the same performance
as standard baselines on the training set (MLP, CNN with 1 and 3 layers). Generalization to the test
set is by far best for Neural NID (Fig. 1c; see also Appendix).

3

(a) Schematics of the task Inclined Plane

0 1 2 3 4 5 6 7 8
Iterations

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

BC
E

Lo
ss

NID
Conv-1L
Conv-3L
MLP

(b) Compound Training Errors

0 1 2 3 4 5 6 7 8
Iterations

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

BC
E

Lo
ss

NID
Conv-1L
Conv-3L
MLP

(c) Compound Test Errors

0.0 0.2 0.4 0.6 0.8

Silhouette

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Te
st

 E
rro

r

5e-5
5e-6
5e-7
5e-8

(d) λ2 coloring

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

(e) λ1 = λ2 = 0

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

(f) λ1 = 5e−8, λ2 = 5e−6

Figure 1: 1a During training in the Inclined Plane Domain the yellow and the purple object are seen
only on the left slope, whereas the red and the green object are seen on both slopes. Colors and
x-coordinates are given as input. Neural NID learns an abstract representation where the green and the
yellow object are grouped together and the purple and the red one, therefore generalizing well to tests
where the yellow and purple objects are seen on the right slope. 1b All methods achieve low training
error. 1c Only Neural NID achieves low test error. 1d Configurations achieving low test error tend to
have high Silhouette scores, suggesting that successful generalization depends on clear clustering.
Without entropy regularization (1e) the abstract representations of the green and the yellow object
at different x-coordinates are usually not grouped, whereas they are with entropy regularization (1f;
yellow and purple dots are almost entirely covering green and red dots, respectively).

To answer our second question we look at the correlation between the cumulative error on the test set
and the Silhouette score [15] attained by the clustering algorithm that assigns the labels corresponding
to the three logic categories needed to explain the next state of the system, i.e, C1 is the cluster of
learned representations of objects that do not roll, C2 the cluster of representations of rollable objects
on the left slope, and, C3 the cluster of representations of rollable objects on the right slope. The
Silhouette score is computed on the points generated by f enc for different o and p. These points
are plotted in Figures 1e, 1f. It can be seen how in presence of regularization (Figure 1f) objects
with similar properties are grouped in dense clusters. This allows better generalization as can be
seen e.g. in Fig. 1d that shows how the cumulative test error at the end of the rollout tends to be low
for Silhouette values that approach 1, i.e. when clustering works well. We find for regularization
constants λ1 ≈ 5e−8 and λ2 ≈ 5e−6 that many simulations reach a high Silhouette score above 0.8.
For these high Silhouette scores the test error is usually very low. The choice of the number K of
abstract feature vectors seems less crucial.

4 Conclusions

We have empirically shown that Neural ND achieves successful out-of-distribution generalization in
a toy setting. Remarkably, for out-of-distribution generalization Neural NID does not need features
like the object shape because the relevant abstract features are learned by experience. The Neural
NID framework may be general enough to be applied on top of more complex architectures for model
based Reinforcement Learning [10, 22, 7, 8]. Furthermore, Neural NID ideas may be useful to learn
abstract representations of PDDL domains [16] from raw observations, without the need of specifying
predicates.

4

References
[1] Peter W. Battaglia et al. Interaction Networks for Learning about Objects, Relations and

Physics. 2016. arXiv: 1612.00222 [cs.AI].
[2] Peter W. Battaglia et al. Relational inductive biases, deep learning, and graph networks. 2018.

arXiv: 1806.01261 [cs.LG].
[3] Wilka Carvalho et al. ROMA: A Relational Object Modeling Agent for Sample-Efficient

Reinforcement Learning. 2020.
[4] Miles Cranmer et al. Discovering Symbolic Models from Deep Learning with Inductive Biases.

2020. arXiv: 2006.11287 [cs.LG].
[5] Sašo Džeroski, Luc De Raedt, and Hendrik Blockeel. “Relational reinforcement learning”.

In: Inductive Logic Programming. Ed. by David Page. Berlin, Heidelberg: Springer Berlin
Heidelberg, 1998, pp. 11–22. ISBN: 978-3-540-69059-7.

[6] Klaus Greff, Sjoerd van Steenkiste, and Jürgen Schmidhuber. Neural Expectation Maximization.
2017. arXiv: 1708.03498 [cs.LG].

[7] Zhengyao Jiang and Shan Luo. “Neural Logic Reinforcement Learning”. In: Proceedings of
the 36th International Conference on Machine Learning. Ed. by Kamalika Chaudhuri and
Ruslan Salakhutdinov. Vol. 97. Proceedings of Machine Learning Research. Long Beach,
California, USA: PMLR, Sept. 2019, pp. 3110–3119. URL: http://proceedings.mlr.
press/v97/jiang19a.html.

[8] Thomas Kipf, Elise van der Pol, and Max Welling. Contrastive Learning of Structured World
Models. 2020. arXiv: 1911.12247 [stat.ML].

[9] George Konidaris, Leslie Pack Kaelbling, and Tomas Lozano-Perez. “From Skills to Symbols:
Learning Symbolic Representations for Abstract High-Level Planning”. In: Journal of Artificial
Intelligence Research 61 (Jan. 2018), pp. 215–289. ISSN: 1076-9757. DOI: 10.1613/jair.
5575. URL: http://dx.doi.org/10.1613/jair.5575.

[10] Tejas D Kulkarni et al. “Unsupervised Learning of Object Keypoints for Perception and
Control”. In: Advances in Neural Information Processing Systems. Ed. by H. Wallach et al.
Vol. 32. Curran Associates, Inc., 2019, pp. 10724–10734. URL: https://proceedings.
neurips.cc/paper/2019/file/dae3312c4c6c7000a37ecfb7b0aeb0e4-Paper.pdf.

[11] Tobias Lang, Marc Toussaint, and Kristian Kersting. “Exploration in Relational Domains for
Model-based Reinforcement Learning”. In: Journal of Machine Learning Research 13.119
(2012), pp. 3725–3768. URL: http://jmlr.org/papers/v13/lang12a.html.

[12] Francesco Locatello et al. “Object-Centric Learning with Slot Attention”. In: arXiv e-prints,
arXiv:2006.15055 (June 2020), arXiv:2006.15055. arXiv: 2006.15055 [cs.LG].

[13] Drew McDermott et al. “PDDL-the planning domain definition language”. In: 1998.
[14] H. M. Pasula, L. S. Zettlemoyer, and L. P. Kaelbling. “Learning Symbolic Models of Stochastic

Domains”. In: Journal of Artificial Intelligence Research 29 (July 2007), pp. 309–352. ISSN:
1076-9757. DOI: 10.1613/jair.2113. URL: http://dx.doi.org/10.1613/jair.2113.

[15] Peter J. Rousseeuw. “Silhouettes: A graphical aid to the interpretation and validation of cluster
analysis”. In: Journal of Computational and Applied Mathematics 20 (1987), pp. 53–65.
ISSN: 0377-0427. DOI: https://doi.org/10.1016/0377-0427(87)90125-7. URL:
https://www.sciencedirect.com/science/article/pii/0377042787901257.

[16] Tom Silver and Rohan Chitnis. “PDDLGym: Gym Environments from PDDL Problems”. In:
International Conference on Automated Planning and Scheduling (ICAPS) PRL Workshop.
2020. URL: https://github.com/tomsilver/pddlgym.

[17] Elizabeth S. Spelke and Katherine D. Kinzler. “Core knowledge”. In: Developmental Science
10.1 (2007), pp. 89–96. DOI: https://doi.org/10.1111/j.1467-7687.2007.00569.x.
eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1467-7687.2007.
00569.x. URL: https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-
7687.2007.00569.x.

[18] Sjoerd van Steenkiste et al. Relational Neural Expectation Maximization: Unsupervised
Discovery of Objects and their Interactions. 2018. arXiv: 1802.10353 [cs.LG].

[19] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. Second.
The MIT Press, 2018. URL: http://incompleteideas.net/book/the-book-2nd.html.

5

https://arxiv.org/abs/1612.00222
https://arxiv.org/abs/1806.01261
https://arxiv.org/abs/2006.11287
https://arxiv.org/abs/1708.03498
http://proceedings.mlr.press/v97/jiang19a.html
http://proceedings.mlr.press/v97/jiang19a.html
https://arxiv.org/abs/1911.12247
https://doi.org/10.1613/jair.5575
https://doi.org/10.1613/jair.5575
http://dx.doi.org/10.1613/jair.5575
https://proceedings.neurips.cc/paper/2019/file/dae3312c4c6c7000a37ecfb7b0aeb0e4-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/dae3312c4c6c7000a37ecfb7b0aeb0e4-Paper.pdf
http://jmlr.org/papers/v13/lang12a.html
https://arxiv.org/abs/2006.15055
https://doi.org/10.1613/jair.2113
http://dx.doi.org/10.1613/jair.2113
https://doi.org/https://doi.org/10.1016/0377-0427(87)90125-7
https://www.sciencedirect.com/science/article/pii/0377042787901257
https://github.com/tomsilver/pddlgym
https://doi.org/https://doi.org/10.1111/j.1467-7687.2007.00569.x
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1467-7687.2007.00569.x
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1467-7687.2007.00569.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-7687.2007.00569.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-7687.2007.00569.x
https://arxiv.org/abs/1802.10353
http://incompleteideas.net/book/the-book-2nd.html

[20] Emre Ugur and Justus Piater. “Bottom-up learning of object categories, action effects and
logical rules: From continuous manipulative exploration to symbolic planning”. In: 2015 IEEE
International Conference on Robotics and Automation (ICRA) (May 2015). DOI: 10.1109/
icra.2015.7139553. URL: http://dx.doi.org/10.1109/ICRA.2015.7139553.

[21] Rishi Veerapaneni et al. Entity Abstraction in Visual Model-Based Reinforcement Learning.
2020. arXiv: 1910.12827 [cs.LG].

[22] Vinicius Zambaldi et al. Relational Deep Reinforcement Learning. 2018. arXiv: 1806.01830
[cs.LG].

6

https://doi.org/10.1109/icra.2015.7139553
https://doi.org/10.1109/icra.2015.7139553
http://dx.doi.org/10.1109/ICRA.2015.7139553
https://arxiv.org/abs/1910.12827
https://arxiv.org/abs/1806.01830
https://arxiv.org/abs/1806.01830

0 1 2 3 4 5 6 7 8
Iterations

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

BC
E

Lo
ss

NID
Conv-1L
Conv-3L
MLP

(a) Inclined Plane: Compound Errors on Train Set (Avg.
10 seeds)

0 1 2 3 4 5 6 7 8
Iterations

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

BC
E

Lo
ss

NID
Conv-1L
Conv-3L
MLP

(b) Inclined Plane: Compound Errors on Test Set (Avg.
10 seeds)

Figure 2: Rollouts and corresponding cumulative errors for the four models on the training set and
test set respectively. It can be noticed that while all the models perform similarly on the train set,
only our NID generalizes acceptably on the test set. For each seed, we compute the mean of the BCE
Loss across 100 rollouts of 8 steps. Then we compute the average and the standard deviation across
10 different seeds to obtain the mean values and the standard deviations reported in the plot.

A Architecture of the transition map

As mentioned, an essential ingredient of Neural NID is a collection of possible outcome functions
{Ωz : R|O|×D → R|O|×D}. In modeling the dynamics of a relational environment is reasonable to
assume that each object is subject only to a local transformation across consecutive steps at a fine
enough time scale. Therefore, under the assumption of fine enough time scale, the use of convolution
for modeling the possible outcomes is a well motivated inductive bias. In formulas, we have:

Ωz(xt)[o, p] =

S2∑
l=−S2

ωz[l]xt[o, p− l] (4)

where the convolutional kernels ωz are shared across the object dimension and have size (2S2 + 1).
Furthermore, it is implicitly assumed that xt[o, p− l] is properly zero padded so that the dimension
of Ωz(xt) is equal to the dimension of the input xt.

B Additional experiments on Inclined Plane

Our first experiment is on a task that we introduce with this work called Inclined Plane. It has been
designed to specifically test the generalization across objects capability of Neural NID. In particular,
we have some objects on an inclined plane. Some of them are spheres and consequently can roll
down while others stay in place. In addition, the environment presents two slopes that cause the
spheres to roll on different directions according to their positions. One of these objects, the yellow
one in Figure 1a, is presented only on the left slope during the training while it is located only on the
right during testing. Figure 1a depicts a sample from the training set in the left column and a sample
from the test set on the right column.

Generalizing the behaviour of the yellow objects across slopes would be natural for humans. Pointing
to the fact that the yellow object rolls on the left slope, they would associate the property can roll
to it. Leveraging on this property they would predict that the yellow object moves in the opposite
direction when it is left on a slope with opposite slope.

Despite its simplicity, Inclined Plane is a challenging task for a forecaster since the correct general-
ization requires to reason about:

1. The invariance breaking point when the slope changes direction
2. Abstract properties of the objects, e.g. the fact that some objects can roll and others can not.

7

sphere
cube
cylinder_hor
cylinder_ver

(a) t = 0

sphere
cube
cylinder_hor
cylinder_ver

(b) NID t = 1

sphere
cube
cylinder_hor
cylinder_ver

(c) NID t = 2

sphere
cube
cylinder_hor
cylinder_ver

(d) NID t = 3

sphere
cube
cylinder_hor
cylinder_ver

(e) t = 0

sphere
cube
cylinder_hor
cylinder_ver

(f) MLP t = 1

sphere
cube
cylinder_hor
cylinder_ver

(g) MLP t = 2

sphere
cube
cylinder_hor
cylinder_ver

(h) MLP t = 3

sphere
cube
cylinder_hor
cylinder_ver

(i) t = 0

sphere
cube
cylinder_hor
cylinder_ver

(j) Conv-1L t = 1

sphere
cube
cylinder_hor
cylinder_ver

(k) Conv-1L t = 2

sphere
cube
cylinder_hor
cylinder_ver

(l) Conv-1L t = 3

sphere
cube
cylinder_hor
cylinder_ver

(m) t = 0

sphere
cube
cylinder_hor
cylinder_ver

(n) Conv-3L t = 1

sphere
cube
cylinder_hor
cylinder_ver

(o) Conv-3L t = 2

sphere
cube
cylinder_hor
cylinder_ver

(p) Conv-3L t = 3

Figure 3: Visual inspection of the models predictions on the test set for Inclined Plane. The first row
presents the rollout simulated by our model. It can be seen that correctly capture the downhill motion
of the yellow object that was not seen on that slope during training. The other rows report the evolution
predicted by the baselines that are wrong for various reasons. For example, the convolutional network
with only one layer assumes full invariance so it is not expressive enough to model the two possible
directions of motion. However, if we add some flexibility like 2 extra convolutional layers with all to
all connections across the channels, we get the result in the last row that predict the yellow and green
object to move upwards. Finally, the MLP predictions in the second rows move the purple and yellow
objects on the left slope where they were located during the training phase.

3. Relations among them, e.g. understand that objects can not pass through each other.

The results in Figure 4 show that our model suffers from higher variance during training when
compared to the three baselines. Also, the mean value of the learning curve converges slower,
suggesting that our architecture is harder to optimize. However, looking at Figure 2b we show the
error of the simulated evolution of the system under the test set initial distribution. Notice instead that
in Figure 2a that reports the same experiment executed on the training set, the model performance is
much closer. It can be seen that despite having learned to simulate the evolution of the training set,
CNNs and MLPs always fail in correctly generalizing while Neural NID succeed in this case.

Figure 3 allows to visually inspect the performance difference reported in Figure 2b. In particular,
the first row presents the rollout simulated by our Neural NID. It can be seen that it correctly captures
the downwards motion of the yellow object that was not seen on that slope during training. The other
rows report the evolution predicted by the baselines that are wrong for various reasons. For example,

8

0 20 40 60 80 100
Iterations*500

0.06

0.08

0.10

0.12

0.14

BC
E

Lo
ss

NID
Conv-1L
Conv-3L
MLP

Figure 4: Learning curves for our NID in green against the three proposed baselines. We can see that
our model is difficult to optimize and suffers from high variance. The learning curves are averaged
across 10 seeds and averaged in bins of 500 steps.

the convolutional network with only one layer assumes full invariance so it is not expressive enough
to model the two possible directions of motion. However, if we add some flexibility like 2 additional
convolutional layers with all to all connections across the channels, we get the result in the last row
that predict the yellow and green object to move upwards. Finally, the MLP predictions in the second
rows move the purple and yellow objects on the left slope where they were located during the training
phase.

C Inclined Plane with Agent

We have argued that with Neural NID we aim to propose a new framework for model inference in
model-based reinforcement learning. That is, Neural NID should be able to model the consequences
that external actions have on the environment. The task Inclined Plane allow to certify Neural NID
capability to predict how the object relations and the environment physics affect the evolution of
the system. However, we did not consider an agent acting in those environments. Therefore, we
introduce an agent and we obtain a new environment that we call Inclined Plane with Agent.

The agent is represented exactly as ordinary objects are represented, i.e. assigning it an index
oagent : 1 ≤ oagent ≤ |O| and encoding its position in the environment as a slice of the input tensor
denoted as xt[oagent]. However, an architectural change is needed to take actions into account. We
choose to modify the input of the decoding function fdec as follows:

fdec[o, p, a] = P (zt|xt, o, p, a) = softmax2(MLP(Concat(vt[o, p], ea))) (5)

The agent can choose between four discrete actions: Move left without grabbing, Move right without
grabbing, Move left while grabbing, Move right while grabbing. The agent can move to a position
even if it is occupied by another object. Then if it takes one of the two grabbing actions from that
position, the other object moves with the agent.

Rollouts of Neural NID predictions are compared against the ground truth in Figures 5, 6, 7.

D Ablation study

We carried out an ablation study to verify which of the Neural NID building blocks are the more
critical in achieving a strong out-of-distribution generalization. The following paragraph investigates
ablation regarding the following components:

1. The importance of entropy regularization in the loss function (cf. (3))

2. The importance of the matrixW rank upper bound K.

3. The attention mechanism. In particular, we compare a sample dependent to a sample
independent version of the attention mechanism for the function f enc.

9

Hyperparameter Value
dR 4
K 4
d1 2
dP 4
Relational Convolutional Filter Sizes S1 = 1
Outcome Convolutional Filter Sizes S2 = 1
Optimizer, lr, batch size RMSProp, 1e-2, 1 (Online Training)
Entropy regularizers λ1 = 5e−7, λ2 = 5e−6
MLP Layers 2
MLP Activation tanh
Table 1: Hyperparameters for Neural NID common to all the experiments

sphere
cube
cylinder_hor
cylinder_ver
agent

(a) NID t = 5

sphere
cube
cylinder_hor
cylinder_ver
agent

(b) NID t = 6

sphere
cube
cylinder_hor
cylinder_ver
agent

(c) NID t = 7

sphere
cube
cylinder_hor
cylinder_ver
agent

(d) NID t = 8

sphere
cube
cylinder_hor
cylinder_ver
agent

(e) Truth t = 5

sphere
cube
cylinder_hor
cylinder_ver
agent

(f) Truth t = 6

sphere
cube
cylinder_hor
cylinder_ver
agent

(g) Truth t = 7

sphere
cube
cylinder_hor
cylinder_ver
agent

(h) Truth t = 8

Figure 5: Visual inspection of the models predictions on the test set for Inclined Plane with Agent.
From this frame sequence, it can be noticed that the learned dynamics model takes into account
correctly the effects of both the slope and the agent on the green ball. For example, from t = 5
to t = 7, the green ball follows the movements that the agent (the black triangles) takes while at
t = 8, the agent takes the action Move left without grabbing. Consequently, the green ball is at that
point subject only to the gravity due to the right slope, so it moves one step downhill. Our model
captures also this movement due to the environment properties in addition to the movements due to
the interaction with the agent.

At first, we present the result obtained changing only one hyparameters at time while leaving all the
others as in Table 1. After that, we present a wider ablation study.

E Entropy ablation

The effect of entropy regularization in the loss (3) is clearly visible in the embedding space for the
vector v̄P , that we recall is obtained as follows:

v̄P = σ(Concat(eo, ep)W) (6)

where σ is the sigmoid function applied pointwise. In Figure 11 we report the obtained v̄P for all the
possible combinations of (o, p) ∈ {O × {1, . . . , D}. Figure 11 refers to the environment Inclined
Plane where D = 12 and O = {1, . . . , 5}. The coloring in Figure 11 are assigned according to the
object index and the colours match the ones used in the environment renderings, e.g. Figure 3. Figure
12 is the result of the same experiment but using the standard entropy regularization with values for
λ1 and λ2 given in Table 1.

10

sphere
cube
cylinder_hor
cylinder_ver
agent

(a) NID t = 5

sphere
cube
cylinder_hor
cylinder_ver
agent

(b) NID t = 6

sphere
cube
cylinder_hor
cylinder_ver
agent

(c) NID t = 7

sphere
cube
cylinder_hor
cylinder_ver
agent

(d) NID t = 8

sphere
cube
cylinder_hor
cylinder_ver
agent

(e) Truth t = 5

sphere
cube
cylinder_hor
cylinder_ver
agent

(f) Truth t = 6

sphere
cube
cylinder_hor
cylinder_ver
agent

(g) Truth t = 7

sphere
cube
cylinder_hor
cylinder_ver
agent

(h) Truth t = 8

Figure 6: Another visual inspection of the models predictions on the test set for Inclined Plane with
Agent. From t = 5 to t = 7, we see that Neural NID captures well the decision of the agent to move
one step on the right. Then at t = 7, the agent is in the same position of the purple cube and it takes
the action Move left while grabbing. This action changes the state of the purple cube that can no
longer sustain the green ball. Consequently, it rolls down from the right slope. The correct modeling
of such kind of "chain reactions" requires to understand the effects that the agent’s action on one
object can have on the others. In this difficult situation our Neural NID struggles to provide a perfect
prediction, however the subplot (d) shows that Neural NID puts the largest probability mass on the
correct position of the green ball.

The visual comparison between Figures 11 and 12 reveals that without entropy regularization
the values attained by v̄P are highly scattered. On the contrary, those are clustered when we
introduce entropy in the loss function. This fact has consequences on the out-of-training distribution
generalization.

Indeed, in Figure 8a we show that the error for the case without entropy compounds quicker along
rollouts. One can notice also that without entropy regularization the variance across different training
initializations is higher.
Both those factor can be explained by the absence of entropy in the loss. Indeed, as the former point,
the clustered representation obtained in that case makes object with equal properties indistinguishable
for the following layers, thus those are forced to find a common representation for the behaviour of
both objects.
Regarding the latter point, without taking entropy into account, there are no longer embedding space
configurations that are favourable with respect to the others. Therefore, the higher variance is due
to the fact that some training initializations converge to configurations that are more convenient for
out-of-training distribution generalization while others do not.

Beyond that, we verified that both the regularizers, i.e. λ1 6= 0 and λ2 6= 0, are necessary to encourage
convenient representations in the embedding space. In particular, Figures 9 and 10 show that in the
case of only λ1 nonzero a clustered representation is hardly recovered while it emerges when λ2
alone is used. All the others hyperparameters are fixed as in Table 1.
Despite this finding, when looking at the out-of-distribution error in Figure 8b one can notice that the
best performance is attained when both the regularizers are used.

In the Appendix, we report a more fine grained study where we tested different values of the
hyperparameters λ1 and λ2. This more detailed ablation suggests that a complex relation exists
between the two regularizers making difficult to extract general conclusions about their reciprocal
tuning.

11

sphere
cube
cylinder_hor
cylinder_ver
agent

(a) NID t = 0

sphere
cube
cylinder_hor
cylinder_ver
agent

(b) NID t = 1

sphere
cube
cylinder_hor
cylinder_ver
agent

(c) NID t = 2

sphere
cube
cylinder_hor
cylinder_ver
agent

(d) NID t = 3

sphere
cube
cylinder_hor
cylinder_ver
agent

(e) Truth t = 0

sphere
cube
cylinder_hor
cylinder_ver
agent

(f) Truth t = 1

sphere
cube
cylinder_hor
cylinder_ver
agent

(g) Truth t = 2

sphere
cube
cylinder_hor
cylinder_ver
agent

(h) Truth t = 3

Figure 7: Visual inspection of the out-of-training-distribution generalization in the environment
Inclined Plane with Agent. Looking at the right slope we notice that the Neural NID predictions for
the yellow and green balls match the true evolution of the system. Recall that the yellow ball was
never seen on that slope during training so in order to correctly predict its behaviour the model needs
to reason about the abstract properties of that object.

F Sample dependent versus sample independent attention

We tried to modify the standard attention mechanism as follows:

vP =σ((Concat(eo, ep))TW P
1)W P

2 =

σ((Concat(eo, ep))T softmax(Q)V P)W P
2 (7)

In the above formulation, the attention matrixW P
1 is the same for each input Concat(eo, ep). We

refer to this formulation as Sample independent attention. In the main text, we introduced instead an
attention matrix that depends on the sample Concat(eo, ep). In formulas:

vP = σ(softmax(Concat(eo, ep)TQ)V P)W P
2 (8)

Figure 8c reports the cumulative error along a rollout in Inclined Plane for the sample dependent or
sample independent attention while keeping the others hyperparameters fixed as in Table 1. For this
choice, it emerges that the sample dependent version generalizes better and with lower variance than
the sample independent version.

G Systematic ablation study

We performed a grid search over all the possible configuration arising from λ1 ∈
{5e−8, 5e−7, 5e−6, 5e−5}, λ2 ∈ {5e−8, 5e−7, 5e−6, 5e−5}, random or fixed weight initializa-
tion, K ∈ {4, 8, 16} for fixed initialization and K ∈ {4, 9, 14} for the random initialization. In
addition, we used 10 different seeds for the fixed initialization scheme and 5 for the random one.
That means that, in total, 720 Neural NID models have been compared.

In Figure 8, we plot the cumulative error at the end of an episode on the test set versus the Silhouette
score of the clustering scheme introduced in Section 3. The coloring scheme reflects the value of
the ablation parameters (λ1, λ2, K and the initialization scheme). We can notice that in the most
favourable region for generalization (low test error, high Silhouette) we fing models with constant
values of λ1 and λ2, see Figures 8a and 8b. In particular, the choice λ = 5e−8, λ2 = 5e−6 seems
the best for Inclined Plane. On the contrary, the value of K and the initialization schemes have less
impact. Notice for example the variety of colours in the region with low test error and high Silhouette
in Figures 8c and 8d.

12

0 1 2 3 4 5 6 7 8
Iterations

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

BC
E

Lo
ss

Entropy, K=4
No Entropy, K=4
Entropy, K=9

(a) Ablation: Compound error for the test case. The
higher accumulated error without entropy regularization
shows its importance while the rank upper bound seems
to be a less sensitive parameter. The green line overlaps
with the blue one.

0 1 2 3 4 5 6 7 8
Iterations

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

BC
E

Lo
ss

Entropy
No Entropy
Lambda1 = 0
Lambda2 = 0

(b) Entropy Ablation: Compound error for Neural NID
comparing different entropy regularizers schemes. Both
seems to be needed to keep the out-of-distribution error
under control.

0 1 2 3 4 5 6 7 8
Iterations

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

BC
E

Lo
ss

Sample Independent
Sample Dependent

(c) Attention Ablation: Compound error for Neural
NID with sample dependent and sample independent
attention mechanism.

13

0.0 0.2 0.4 0.6 0.8

Silhouette

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Te
st

 E
rro

r

5e-5
5e-6
5e-7
5e-8

(a) λ1 coloring

0.0 0.2 0.4 0.6 0.8

Silhouette

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Te
st

 E
rro

r

5e-5
5e-6
5e-7
5e-8

(b) λ2 coloring

0.0 0.2 0.4 0.6 0.8

Silhouette

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Te
st

 E
rro

r

4
9
16

(c) K coloring

0.0 0.2 0.4 0.6 0.8

Silhouette

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Te
st

 E
rro

r

fixed
random

(d) Initialization coloring .

Figure 8: Relation between Silhouette and out-of-distribution test error. We report the same point
cloud colored according to the values of λ1, λ2, K or the weight initialization scheme.

14

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

(a) λ1 = 0 Seed 1

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

(b) λ1 = 0 Seed 2

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

(c) λ1 = 0 Seed 3

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

(d) λ1 = 0 Seed 4

Figure 9: Ablation Study of the Embedded Space for the environment Inclined Plane. Only λ2 6= 0.

15

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

(a) λ2 = 0 Seed 1

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

(b) λ2 = 0 Seed 2

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

(c) λ2 = 0 Seed 3

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

(d) λ2 = 0 Seed 4

Figure 10: Ablation Study of the Embedded Space for the environment Inclined Plane. Only λ1 6= 0.

16

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

(a) λ1 = λ2 = 0 Seed 1

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

(b) λ1 = λ2 = 0 Seed 2

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

(c) λ1 = λ2 = 0 Seed 3

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

(d) λ1 = λ2 = 0 Seed 4

Figure 11: Ablation Study of the Embedded Space for the environment Inclined Plane. It can be
clearly seen that the embedding space present a spread encoding of object type and its position. As a
consequences the layers following this one do not use a compact shared representation. This fact
makes impossible to achieve the desired out-of-training distribution generalization.

17

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

(a) λ1 = 5e−7 λ2 = 5e−6,K = 4 Seed 1

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

(b) λ1 = 5e−7 λ2 = 5e−6,K = 4 Seed 2

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

(c) λ1 = 5e−7 λ2 = 5e−6,K = 4 Seed 3

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

(d) λ1 = 5e−7 λ2 = 5e−6,K = 4 Seed 4

Figure 12: Ablation Study of the Embedded Space for the environment Inclined Plane. The embed-
ding space here present evident clusters containing either the embedding of the rolling objects (green
and yellow) or of the non-rolling ones (red and purple).

18

	Introduction
	Neural NID Rules
	The Inclined Plane Domain
	The Transition Selector

	Experiments
	Conclusions
	Architecture of the transition map
	Additional experiments on Inclined Plane
	Inclined Plane with Agent
	Ablation study
	Entropy ablation
	Sample dependent versus sample independent attention
	Systematic ablation study

