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Abstract

Humans are adept at planning actions in real-time dynamic physical environments.
Machine intelligence struggles with this task, and one cause is that running sim-
ulators of complex, real-world environments is computationally expensive. Yet
recent accounts suggest that humans use mental simulation in order to make in-
tuitive physical judgments. How is human physical reasoning so accurate, while
maintaining computational tractability? We suggest that human behavior is well
described by partial simulation, which moves forward in time only parts of the
world deemed relevant. We take as a case study Ludwin-Peery, Bramley, Davis,
and Gureckis (2020), in which a conjunction fallacy was found in the domain of
intuitive physics. This phenomenon is difficult to explain with full simulation, but
we show it can be quantitatively accounted for with partial simulation. We discuss
how AI research could make use of efficient partial simulation in implementations
of commonsense physical reasoning.

1 Introduction

Humans are quite good at reasoning about physical events in their environments. We implicitly make
predictions about objects’ properties (Leslie, Xu, Tremoulet, & Scholl, 1998), and how they will
interact (Kominsky et al., 2017), starting as early as infancy (Baillargeon, 2004; Spelke, Breinlinger,
Macomber, & Jacobson, 1992). Yet our current state-of-the-art engineered systems come nowhere
near human-level competence on these tasks – they are often less accurate than people, or require
extensive computation that makes real-time prediction and control intractable. Thus we propose
looking to human physical prediction to understand useful shortcuts to design into our AI systems.

Some have suggested that humans possess an intuitive physics engine, similar in structure to what is
used to create physics in modern video games (Battaglia, Hamrick, & Tenenbaum, 2013; Hamrick,
Battaglia, Griffiths, & Tenenbaum, 2016). Using such a model, we can run forward simulations of
possible outcomes, allowing us to make predictions about the probabilities of physical events (Ullman,
Spelke, Battaglia, & Tenenbaum, 2017). Under this proposal, internal models of physical reasoning
are necessarily approximate and probabilistic, as they (a) quickly run through and aggregate over
the outcomes of many noisy simulations (Smith & Vul, 2013), and (b) take “shortcuts” in order to
maintain computational tractability (Vul, Goodman, Griffiths, & Tenenbaum, 2014). The rich mental
representations in these models allow for nuanced predictions that flexibly integrate information from
variable input sources (Ullman & Tenenbaum, 2020).
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The mental simulation account has not gone unchallenged (e.g. Marcus & Davis, 2013), raising
questions of the feasibility of adopting such models for AI. Some of this criticism has targeted the
notion of an “optimal” or “full” simulation, in which every object in the world is accounted for in
the simulation, and its dynamics fully unfolded (Davis & Marcus, 2015). Yet human reasoning is
subject to constraints of computation (Lieder & Griffiths, 2020), and mental physical simulation – if
it exists – is no exception (Ullman et al., 2017). We suggest that partial simulation is one particularly
useful approximation, in which humans simulate only objects, events, and properties that they deem
relevant. While variations on partial simulation have been proposed (Hegarty, 2004), they have been
speculative and not instantiated as computational models. Here we present a specific formal model
of such partial simulation, and investigate it qualitatively and quantitatively. We argue such partial
simulation is key to efficient implementations of useful commonsense physical reasoning in machines
as well.

We take as a case study Ludwin-Peery et al. (2020), which presented particularly compelling empirical
evidence challenging the simulation view. They begin with the observation that a full mental
simulation should at least roughly mirror basic axioms of probability theory. In contrast to these
axioms, Ludwin-Peery et al. (2020) show that people consistently commit a physical version of
the Conjunction Fallacy: People rate the conjunction of two events p(A ∩ B) as more likely than
its constituent p(B) – a logical impossibility (Tversky & Kahneman, 1982). If physical reasoning
involves simultaneous simulation of all the objects in a scene, a conjunction fallacy in the domain
of physical reasoning should be impossible; therefore, Ludwin-Peery et al. (2020) argue, physical
reasoning cannot rely on simulations.

However, this logic holds only for a full simulation of the scene. We suggest that some people only
simulate parts of the scene they are considering. Our model predicts the set of conditions under
which one might expect to observe a physical conjunction fallacy. This model rests on only a single
parameter, the probability of simulating one of the objects in the scene. Using stimuli and methods
that mirror those used by Ludwin-Peery et al. (2020), we collected novel human data to compare
against our partial simulation model. We find that our model accurately accounts for people’s physical
reasoning in a simple prediction task, both qualitatively and quantitatively, including the existence,
effect size, and functional form of the physical conjunction fallacy. This model lays the ground for
future work exploring how AI systems may also benefit from efficient partial simulation.

2 Model
Under our framework of partial simulation, people only include relevant objects in their mental
simulation. Such an implicit decision relies on the pragmatics of the probability judgements people
are asked to make. In particular, here we consider probability judgments in the scenarios used by
Ludwin-Peery et al. (2020), in which a gray cannonball could collide with a pink sphere (see Fig. 1A).
p(H) is the probability of the cannonball Hitting the pink sphere; p(G) is the probability of the pink
sphere landing on the Grass; and p(H ∩G) is the conjunction, the probability that the cannonball hits
the sphere, and the sphere lands on the grass. Ludwin-Peery et al. (2020) find that p(H ∩G) > p(G)
(i.e., a conjunction fallacy). While Ludwin-Peery et al. (2020) did not account for the specific effect
size of the conjunction fallacy, we label its magnitude CF = p(H ∩G)− p(G).
Our model crucially involves a term, S, which denotes whether an object (in this case, the cannonball)
will be simulated at all. Because the judgment p(G) – “How likely is it that the pink sphere will end
up on the grass?” – does not explicitly invoke the cannonball, the degree to which the cannonball is
simulated (or not) could vary across people and scenes.

If the cannonball is simulated (S = 1), then one must consider the cases in which it hits or misses
the pink sphere. If the cannonball is not simulated (S = 0), one needs only to consider p(G|¬H)).
Putting the two options together, and denoting the probability p(S = 1) as p(S) for shorthand, we
have:

p(G) = p(S)[p(H) ∗ p(G|H) + (1− p(H)) ∗ p(G|¬H)] + (1− p(S)) ∗ p(G|¬H) (1)

The probability of the cannonball hitting the pink sphere and the sphere landing on the grass is:
p(H ∩G) = p(H) ∗ p(G|H) (2)

Because simulation of the cannonball is required to calculate p(H), and this is explicitly noted in the
phrasing of the question, we assume that the conjunction requires full simulation of both the sphere
and the cannonball.
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Figure 1: A. Participants saw 15 scenes (3 trajectories × 5 starting positions) in which a cannonball
could collide with a pink sphere. B-D. Our model predicts that CF will both increase with more
direct-hit trajectories (B), and show an inverse U-shape with the position of the sphere (C), which
produces quantitative predictions of the magnitude of the CF effect across all scenes (D).

Our model predicts when and why a conjunction fallacy will be observed. In particular, the magnitude
of the conjunction fallacy CF should increase as: (1) p(H) increases (i.e., as the cannonball becomes
more likely to directly collide with the pink sphere); (2) p(G|H) increases (i.e., as it becomes more
likely that a hit from the cannonball would lead to the pink sphere landing on the grass); and (3)
p(G|¬H) decreases (i.e., as the pink sphere’s starting position moves towards the center of the
hole). Our model makes the non-obvious predictions that CF will both increase with more direct-hit
trajectories, and show an inverse U-shape with the position of the sphere (see Fig. 1D). Notably,
the set of stimuli used by Ludwin-Peery et al. (2020) comprised scenes in which the pink sphere
was either partially or directly over the hole – circumstances in which a conjunction fallacy would
indeed be predicted by our partial simulation model. We test a range of scenes that more fully tiles
this space, in order to test a range of our model’s predictions.

We use Equations 1 and 2 to build a model that explains the conjunction fallacy in intuitive physics,
treating p(S) as a free parameter. We fit this model to aggregate data (over all trials and participants)
by performing a grid search over values from 0 to 1, by increments of .01, for p(S). The best-fit
values will be those that produce the lowest mean squared error (MSE) between the actual magnitude
of conjunction fallacy that participants produced (i.e., p(H ∩G)− p(G)), and model predictions for
the magnitude of conjunction fallacy, which will be computed using the identities described above
based on human ratings of p(H), p(G|H), and p(G|¬H). Given this best-fit value of p(S), we will
examine the relationship between human judgments and model predictions.

3 Methods for Behavioral Study
Participants were adults recruited from Amazon Mechanical Turk via CloudResarch. Participants
were paid $4.15, and the study took an average of 23.5 minutes to complete. As stated in our
preregistration and mirroring the power analysis in Ludwin-Peery et al. (2020), our final sample
consisted of N = 60 participants (21 female; M(SD)age = 38(9.7) years). An additional 41
participants were dropped and replaced due to failure to pass built-in check questions.

Using the Pymunk package in Python 3, we created scenes in which a gray cannonball could
potentially hit a pink sphere, similar to Ludwin-Peery et al. (2020) in which both objects are above a
field of grass with a hole in it. The scenes stop part-way through, after playing for 600 ms – always
before the cannonball would hit or miss the pink sphere. These scenes could vary based on two
factors: (1) The starting positions of the objects relative to the hole; (2) The trajectory of the gray
cannonball. We initially created 54 scenes (9 starting positions × 7 trajectories); from these, we
selected a total of 15 videos (5 starting positions × 3 trajectories) to use in our main experiment,
based on results from pilot data (see Fig. 1A, and the OSF repository for details).

The general procedure was similar to that used by Ludwin-Peery et al. (2020). After consenting to
participate, participants read a detailed description of the task and watched some example videos, to
acquaint them with the physical properties of the objects in these scenes. Next, participants viewed all
fifteen scenes five times in a blocked design. The order of scenes was randomized across participants.
In each of the five blocks, participants were asked to make a different probability judgment for all
fifteen scenes: (1) p(H ∩G): “How likely is it that the cannonball will hit the pink sphere, and then
the pink sphere will end up on the grass?”. (2) p(G): “How likely is it that the pink sphere will end
up on the grass?”. (3) p(H): “How likely is it that the cannonball will hit the pink sphere?”. (4)
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Figure 2: A. Mean human CF values (p(H ∩G)− p(G)) by scene, with best-fit polynomials for each
trajectory and Bayesian 95% credible interval of the polynomial fit. Error bars = +/- the standard
error. B. Mean model predictions for CF values using the best-fit p(S) value = 0.88, with best-fit
polynomials for each trajectory and Bayesian 95% credible interval of the polynomial fit. Error
bars = +/- the standard error. C. The correlation between human data and model predictions was
r(13) = 0.91.

p(G|H): “Suppose the cannonball hits the pink sphere. How likely is it that the pink sphere would
then end up on the grass?”. (5) p(G|¬H): “Imagine that the cannonball was not in the scene at all.
How likely is it that the pink sphere would end up on the grass?”.

4 Results
We computed CF by first calculating p(H ∩G)− p(G) for each participant on each of the 15 scenes,
and then averaging across participants, yielding one aggregated CF value for each scene. First, we
performed a one-sample t-test comparing the average CF magnitude to 0, in order to assess whether
there was an conjunction fallacy when analyzing our data in the aggregate. The average difference
between judgments of p(H ∩ G) and p(G) was −0.059, which was significantly different from 0
(t(59) = −4.57, p < 0.001). Participants appropriately rated the conjunction as less likely than its
constituent, thus not succumbing to the conjunction fallacy.

Qualitatively, our model predicts that the magnitude of the conjunction fallacy CF will increase
linearly with more direct-hit trajectories, and show an inverse U-shape with position. We first tested
these predictions by performing a 2-way repeated measures ANOVA, with the starting position
(5 levels) and trajectory (3 levels) of each scene predicting the CF magnitude. Both main effects
were significant (Starting position: F(4,216) = 52.7, p < 0.001, η2p = 0.66; Trajectory: F(2,216) =

31.5, p < 0.001, η2p = 0.54), as was the interaction (F(8,216) = 3.4, p = 0.001, η2p = 0.11).
Polynomial contrasts were also performed on starting position and trajectory. Supporting our
predictions, the best-fit polynomial was quadratic for starting position (t(108) = −12.8, p < 0.001),
and linear for trajectory (t(54) = −7.8, p < 0.001).

The best-fitting value of p(S) was 0.88, which yielded low error (MSE = 0.017). We also correlated
model predictions with human values for CF, and found excellent fit (r(13) = 0.91, p < 0.001; see
Fig. 2C). This suggests that the physical conjunction fallacy can be explained by people performing
full simulation most of the time, but dropping a relevant object and performing partial simulation
occasionally.

5 Discussion
Here we suggested that we could better understand failures of probabilistic reasoning for physical
events as deriving from partial simulation of events, rather than failure to simulate events all together.
Our model and the results of our behavioral experiment support this claim and further help to describe
the errors in this particular case of physical reasoning. While partial simulation led to errors in
judgment in this particular task, we suggest that simulating only “relevant parts” of the scene may
contribute to how people perform physical reasoning so efficiently, and thus is beneficial in general
for real-world reasoning. As some recent work has begun to demonstrate (Agia et al., 2021; Silver
et al., 2021), future developments in AI may consider this form of partial simulation as a potential
feature to explore, rather than a bug.
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