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Abstract

The ability to quickly understand our physical environment and make predictions
about interacting objects is fundamental to us humans. To equip artificial agents
with similar reasoning capabilities, machine learning can be used to approximate
the underlying state dynamics of a system. In this regard, deep learning has gained
much popularity but is relying on the availability of large-enough datasets. In this
work, we present DLO@Scale, a new dataset for studying future state prediction
in the context of multi-body deformable linear object pushing. It contains a
large collection of 100 million simulated interactions enabling thorough statistical
analysis and algorithmic benchmarks. Our data is generated using a high-fidelity
physics engine which simulates complex mechanical phenomena such as elasticity,
plastic deformation and friction. An important aspect is the large variation of the
physical parameters making it suitable for testing meta learning algorithms. We
describe DLO@Scale and present a first empirical evaluation using neural network
baselines. More information and videos can be found at https://sites.google.
com/view/dloscale.

1 Introduction

Understanding and predicting the outcome of actions is an integral part of intelligence. To enable
artificial agents with similar reasoning capabilities, internal models must accurately capture the
dynamics of an environment. Centuries of physics research has provided the means to describe the
behavior of physical bodies using compact equations. While physics models have been proven useful
in many engineering applications, they require exact knowledge of the underlying system’s states and
parameters. Machine learning, on the other hand, learns models given a collection of data samples.

Recently, deep neural networks have shown great potential as general purpose tools for predicting the
future state of a physical systems. Several works applied Graph Neural Networks [6] to emulate the
dynamics of a physical system [18, 15, 5, 20, 16, 14, 22, 19]. A deep generative model was used in
[23] to predict the state of a deformable body given the forces applied on its surface. Neural network
video prediction models were developed in [24, 25, 8, 4, 13, 9] which predict future image frames.
Recent model-based reinforcement learning architectures use neural networks to approximate the
underyling transition dynamics [12, 11, 10, 21]. While impressive results have been achieved, a
general intuition from the learning perspective is still missing. Open questions are: How many data
samples are needed to achieve a certain prediction accuracy? How many samples are required to
adapt to another environment? Which representations and inductive biases are most suitable? Are
those findings consistent with respect to the system’s physical parameters?
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Figure 1: Illustration of pushing environments (deformable object in green and pusher in dark gray).

We present DLO@Scale, a large-scale data collection for evaluating machine learning methods in the
context of non-rigid object pushing. The key motivation of our dataset is to enable rigorous large-scale
investigations by means of a multi-body pushing problem. We focus on contact interactions between
linear deformable and rigid objects that were generated by pushing on a planar surface. From a
learning standpoint, predicting the future state of deformable objects is particularly challenging due to
complicated mechanics, high-dimensional observations and vast dependency on physical parameters.
Our dataset contains more than 100 million interactions simulated using the AGX Dynamics [1]
physics engine. A key feature is the large variety of object parameters such as stiffness values for
plastic or elastic deformation, friction coefficients, object geometries and mass distributions. This
provides an opportunity to study a family of physical systems and investigate various aspects of
domain adaptation.

We provide a first experimental evaluation given standard neural network baselines and discuss the
dependencies between prediction error, number of training samples and the length of the prediction
horizon. Interestingly, our results show significant performance differences between soft, flexible and
elastoplastic deformable linear objects.

2 A new large-scale dataset of non-rigid pushing interactions

In the following, we present DLO@Scale, a new dataset for state prediction in the setting of multi-
body and deformable object pushing. In particular, we study the problem of estimating the state xt+n

of a physical system given its current state xt and a sequence of actions at:t+n−1. In this regard, t
determines the time index and n the prediction horizon.

2.1 Simulation and data collection

We simulate our pushing environments using the AGX Dynamics [1] high-fidelity physics engine
allowing us to model complicated mechanical phenomena such as contact friction, elasticity and
plastic deformation. The data was generated over the course of several days by running multiple
parallel simulation instances on a high-performance computing cluster at the National Supercomputer
Centre in Sweden (NSC) [2]. It contains samples for a large number of domains where each one
corresponds to one particular configuration of physical object parameters. Fig. 2 visualizes several
example pushing domains. We utilize a box-shaped planar workspace which is surrounded by walls.
A new domain is created by sampling from a predefined set of parameters such as type of shapes,
mass densities, density distribution, friction, etc (Sec. 2.2). Then, a deformable linear object is
randomly initialized inside the box. Several rigid objects are randomly positioned close to the center
of the surface. The state of the system is changed by moving a cylindrical pusher on the horizontal
plane. We employ a standard PID controller to update the position of the pusher given desired planar
displacements at ∈ R2. Actions at are sampled randomly but biased towards the direction of closest
deformable object segment. We found this strategy to produce sufficiently rich and non-trivial contact
scenarios. After nP interactions, the trajectory terminates and the simulation is reset.

Our data contains temporal sequences of the poses of all bodies for each interaction step. The
simulation runs in headless mode, hence we do not explicitly store images. Yet, it is possible to
render scenes post-hoc given the recorded object poses (App. 5.1.1). This allows for easy change of
colors, textures, lighting or the camera viewpoints without rerunning the simulation.

2.2 Environment and object parameters

One of the key aspects of DLO@Scale is the large variety of physical parameters resulting in different
domains. We distinguish between three types of parametes Environment, Deformable Object and
Rigid Object:
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Figure 2: Influence of the material type (top row: soft, middle row: flexible, last row: elastoplastic).

Environment

• Surface friction coefficient: Dimensionless value between 0.2 (low friction) and 0.8 (high friction).
• Number of rigid objects: Each domain contains between 0 and 3 rigid objects using the shapes in Fig. 5.

Deformable Object

• Length: Resting length of the object. Integer values between 10mm and 16mm.
• Density: Mass density in kg

m3 . Ranges between 700 kg
m3 and 1400 kg

m3

• Material type: We distinguish between soft, flexible, elastoplastic materials. The soft material is character-
ized by a low stiffness and behaves similar to a rope. The flexible type has a higher stiffness and typically
snaps back to its original shape if applied forces are removed. The elastoplastic material exhibits elastic and
plastic properties, i.e non-reversible deformations. Fig. 2 illustrates the effect of different material types
given identical pusher trajectories.

• Attachment: We enable the possibility to attach a cylindrical body to one end of the deformable object.
The cylindrical object is either movable or fixed, the latter meaning that it’s rigidly attached to the surface.

Rigid object

• Shape: Rigid objects are implemented as composite bodies consisting of simple box-shaped geometries.
An overview of all possible shapes is given in App. 5.1.2.

• Density distribution: The composite structure of rigid objects allows us to specify mass density parame-
ters independently for each sub-geometry. Densities take values between 1200 kg

m3 and 8000 kg
m3 roughly

corresponding to the weight of plastic materials respectively steel.
• Friction: Dimensionless value between 0.2 (low friction) and 0.8 (high friction).

2.3 Dataset partition

Our dataset is divided into the subsets single-domain-large, single-domain-medium and meta-
learning. The single-domain-large set consists of 18 domains each associated with 106 training
pushes. The parameter variations are limited to the material type, attachment and number of rigid
objects. Our idea is to enable rigorous statistical analysis by providing a large number of samples
for few selected domains. single-domain-medium contains 105 pushes for 27 different domains and
considers different length of the deformable object. The meta-learning set comprises 10000 pushes
for 6300 domains using the variation of all parameters in Sec. 2.2. We further improve diversity by
sampling elasticity and plasticity properties for soft, flexible, elastoplastic within predefined ranges.

Real-world systems often introduce uncertainty due to partial observability or imperfect measurements.
To resemble those challenges in simulation, we provide noise-augmented actions and separate test
sets to compare generative model predictions against distributions over future states.

3 Experiments

We ran a set of initial experiments evaluating standard neural network baselines on our data. The top
row in Fig. 3 presents the mean prediction errors for different train set sizes and prediction horizons
averaged over all 18 domains in the single-domain-large set. As shown, our results confirm the
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Figure 3: Top row: Dependencies between prediction error, prediction horizon and dataset size
(single-domain-large). Bottom row: Prediction errors grouped by deformable object material and
prediction horizon.

intuition that the difficulty of the task increases with the time horizon. Increasing the number of
train samples from 105 to 106 still reduces the overall approximation error even in the single-step
setting. The bottom row in Fig. 3 presents the results for a train set of size 106 grouped by the type
of deformable object material. Interestingly, we observe lower accuracy and higher variance for the
flexible material type. One reason might be the difficulty in predicting abrupt state changes introduced
by the snapping behavior of flexible rods.

The meta-learning set provides a variety of different dynamics influenced by unobservable properties
such as the material types or the friction coefficients. We provide initial results for a single model
trained on data from different domains and compare it to a gradient-based meta learning method [7].
For this preliminary study, we do not consider additional rigid objects and focus on the prediction of
the deformable object.

Table 1 shows a comparison of a standard multi-task learning and meta learning baseline. The wide
range of available data allows to thoroughly evaluate both methods in terms of prediction accuracy.
We analyzed the effect of the number of trajectories on the prediction accuracy and the advantages of
including an adaptation phase to gain knowledge about unobservable properties. Our results suggest
that meta learning achieves considerably better performances due to its adaptation phase. Moreover,
the performance increases considerably when using multiple trajectories for adaptation. This finding
suggests the complexity of the state dynamics in the data.

Algorithm Multi-Task MAML
Trajectories 100 500 100 500
Adaptation - K = 1 K = 10 K = 50 K = 1 K = 10 K = 50

N = 5 1.54 1.45 1.17 1.08 1.54 1.45 1.17 1.08
N = 50 1.85 1.56 1.30 1.21 1.85 1.56 1.30 1.21

Table 1: MSE in [m]*10−4 of the predicted deformable object position (4 steps ahead). N denotes
the meta batch size.

4 Conclusion

We introduced DLO@Scale, a dataset for large-scale evaluations of physics prediction models in the
setting of deformable object pushing. The data was generated using a high-fidelity physics simulator
to provide realism of physical interactions. Our intention is foster research at the intersection of
physical reasoning and machine learning. In future work, we seek to extend our experimental
evaluation by studying different state representations and adding real-world recordings which enable
the investigation of sim-to-real adaptation.
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5 Appendix

5.1 DLO@Scale - Additional information

5.1.1 Rendering visualizations from the dataset

Our data contains the positions and orientations of all geometries in the simulation. Hence, we can
easily generate image observations using any 3D rendering tool. Fig. 5.1.1 presents different color
and depth images for the same scene rendered using pyrender [3].

Figure 4: Examples of rendered images created with pyrender [3].

5.1.2 Rigid object shapes

The geometries of rigid objects are sampled given the set of possible shapes illustrated in Fig. 5.

Figure 5: Types of shapes for rigid objects

5.2 Experimental design and details

In the single-domain-large experiments, we used feed-forward neural networks consisting of 4
layers with 128 neurons per layer and LeakyReLU activation functions. We predict the future position
of all deformable object segments (32x2 dimensional) given its current positions and the poses of all
rigid bodies in the scene. The networks are trained using batches of size 64 and a learning rate of
0.0002. We employ a MSE loss on the predicted segment positions. The networks are trained for
a maximum number of 109 iterations. To prevent overfitting in the case of small datasets, we stop
training if the test error did not decrease after 10 subsequent dataset epochs.

For the meta-learning experiments we used a feed-forward neural network consisting of 6 layers of
32 neurons each and LeakyReLU activations. The same architecture is used for both the Multi-Task
and the Meta Learning model. We have restricted the prediction to the deformable linear object
(n=4) and considered only domains without rigid objects. Both models have been trained on 5 · 106
repeated domains with a learning rate of 0.0001. To evaluate the models performances we used
unseen domains corresponding to 25% of the dataset. The used loss is the MSE on the predicted
segments positions. For the meta learning model we used learned inner learning rates specific for
each layer, like [17]. Finally, we used only one gradient step in the adaptation phase.
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