3D-OES: Viewpoint-Invariant Object-Factorized
Environment Simulators

Hsiao-Yu Fish Tung*, Zhou Xian*, Mihir Prabhudesai, Shamit Lal, Katerina Fragkiadaki
Carnegie Mellon University
{htung, xianzl, mprabhud, shamitl, katefl}@cs.cmu.edu
* These authors contributed equally to this work.

Abstract

We propose an action-conditioned dynamics model that predicts scene changes
caused by object and agent interactions in a viewpoint-invariant 3D neural scene
representation space, inferred from RGB-D videos. In this 3D feature space, objects
do not interfere with one another and their appearance persists over time and across
viewpoints. This permits our model to predict future scenes long in the future by
simply “moving" 3D object features based on cumulative object motion predictions.
Object motion predictions are computed by a graph neural network that operates
over the object features extracted from the 3D neural scene representation. Our
model generalizes well across varying number and appearances of interacting
objects as well as across camera viewpoints, outperforming existing 2D and 3D
dynamics models, and enables successful sim-to-real transfer.

1 Introduction

Humans can effortlessly imagine how a scene will change as a result of their interactions with the
objects in the scene [[19, [11]. What is the representation space of these imaginations? They are not
pixel accurate and, interestingly, they are not affected by occlusions. Consider a teaspoon dipping
inside a coffee mug. Though it will be occluded from nearly all viewpoints but the bird’s eye view,
we have no difficulty keeping it in our mind as present and complete. We can imagine watching it
from different viewpoints, increase or decrease its size, predict whether it will fit inside the mug, or
even imagine filling the mug with more spoons. Inspired by human’s capability to simulate scene
changes in a viewpoint-invariant and occlusion-resistant manner, we present 3D object-factorized
environment simulators (3D-OES), an action-conditioned dynamics model that predicts scene changes
caused by object and agent interactions in a viewpoint-invariant 3D neural scene representation space,
inferred from RGB-D videos. 3D-OES differentiably maps an RGB-D image to a 3D neural scene
representation, detects objects in it, and forecasts their future 3D motions, conditioned on actions of
the agent. A graph neural network operates on the extracted 3D object feature maps and the action
input and predicts object 3D translations and rotations. Our model then generates future 3D scenes by
simply translating and rotating object 3D feature maps, inferred from the first time step, according to
cumulative 3D motion predictions. In this way, we avoid distribution shift in object features caused
by forward model unrolling, hence minimizing error accumulation.

Our main insight is that scene dynamics are simpler to learn and represent in 3D than in 2D, for
the following reasons: i) In 3D, object appearance and object location are disentangled. ii) In 3D,
inferring free space and object collisions is easy. We evaluate 3D-OES in single-step and multi-step
object motion prediction for object pushing and falling, and apply it for planning to push objects to
desired locations. We test its generalization while varying the number and appearance of objects in the
scene, and the camera viewpoint. We compare against existing learning-based 2D image-centric or
object-centric models of dynamics [21}42]] as well as graph-based dynamics learned over engineered
3D representations of object locations [35]. Our model outperforms them by a large margin.

Physical Reasoning and Inductive Biases for the Real World at NeurIPS 2021.

— — — — o — — — —— —_———— -
M, M y

I 4 predicted 3D cad

| I object motion I /‘

I

_ Graph | op; Graph
o Networks oy -

P =7+ 00 |

20 _ po L st0
oy = 7+ 07

|8
w Ecrn |
=0
| [fo=0

!_ Networks

-
action l

—_—
v

I': an input RGB-D image d
observed from viewpoint U

Figure 1: 3D-OES predict 3D object motion under agent-object and object-object interactions, using a graph
neural network over 3D feature maps of detected objects.

2 Related Work

The inability of systems of physics equations to capture the complexity of the world [39]] has led many
researchers to pursue learning-based models of dynamics, or combine those with analytic physics
models to help fight the undermodeling and uncertainty of the world [44] 2]]. Learning world models
is both useful for model-based control [21} 20, 16]] as well as a premise towards unsupervised learning
of visuomotor representations [1,134]. Several formulations have been proposed, under various names,
such as world models [20]], action-conditioned video prediction [31], forward models [28]], neural
physics [8]], neural simulators, etc. A central question is the representation space in which predictions
are carried out. We identify two main research threads: (i) Methods that predict the future in a 2D
projective space, such as future visual frames [27} |30} |17, [14]], neural encodings of future frames
[20, 9L 211 [1} 32]], object 2D motion trajectories [[L8, 4} 8], 2D pixel motion fields [16} [12} [17L |6]].
These models work well under a static and fixed camera across training and test conditions, but
cannot effectively generalize across camera viewpoints [10] as we empirically validate. (ii) Methods
that predict the future in a 3D space of object or particle 3D locations and poses extracted from
the RGB images using human annotations [3]] or assumed given [40, 26} 29]. Such explicit 3D state
representations are hard in general to obtain from raw RGB input in-the-wild, outside multiview
environments [3}26]]. Our work builds upon learnable 2D-to-3D convolutional encoders that extract
3D scene representations from images and are trained for self-supervised view prediction, along with
tasks of 3D object detection and 3D motion forecasting, relevant for 3D object dynamics learning.

3 Object-Factorized Environment Simulators (3D-OES)

The architecture of 3D-OES is depicted in Figure[T] At each time step, our model takes as input a
single or a set of RGB-D images of the scene along with the corresponding camera views to capture
them, and encodes these inputs into a 3D scene feature representation by neurally mapping image
and depth maps to 3D feature grids (Section [3.1)). Then, it detects 3D object boxes in the inferred 3D
scene representation, and crops the scene representation to obtain a set of object-centered 3D feature
maps. A graph neural network over the object nodes will take as inputs object appearances and the
agent actions and predict the future 3D rotation and translation for each object (Section[3.2). We use
long-term simulations of 3D-OES to generate action plans for pushing objects to desired locations in
cluttered environments using model predictive control (Section[A.3). We apply our model to learn
dynamics of objects pushed around on a table surface and objects falling on top of others.

3.1 Differentiable 2D-to-3D lifting with Geometry-Aware Recurrent Networks (GRNNs)

Geometry-Aware Recurrent Networks (GRNNs) introduced in [38) [22]] are network architectures
equipped with a differentiable unprojection (2D-to-3D) module and a 3D scene neural map as their
bottleneck. They can be trained end-to-end for a downstream task, such as supervised 3D object
detection or self-supervised view prediction. We will denote the 3D scene feature as M € Rw>x/xdxe
where w, h, d, ¢ denote width, height, depth and number of channels, respectively. Every (z,y, z)
grid location in the 3D feature map M holds a c-dimensional feature vector that describes the semantic
and geometric properties of a corresponding physical location in the 3D world scene. Given an input
video, GRNNSs estimate the relative camera poses between frames, and transform the inferred 3D
features map M; to a world coordinate frame to cancel the camera egomotion, before accumulating it
with 3D feature maps across time steps. In this way, information from 2D pixels that correspond to
the same 3D physical point end up nearby in the 3D neural map. We use such cross-view registration
in case we have access to concurrent multiple camera views for the first timestep of our simulations.
Upon training, GRNNs map RGB-D images or a single RGB-D image to a complete 3D feature map
of the scene they depict, i.e., the model learns to imagine the missing or occluded information from the

input view. We denote this 2D-to-3D mapping as M = Eqrnn (11, ..., It), where M € Rwxhxdxe
and I; = {d;, v;} denotes the RGB-D image d; and the corresponding camera pose v; at time step t.
Note that the input can be a single RGB-D view, in which case M = Eggrnn (7). For further details
on GRNNSs, please refer to [38) 22]. For details on view prediction and 3D object detection, see
Appendix Section[A.T]

3.2 3D Object Graph Neural Networks for Motion Forecasting

We consider a graph interaction network [4] over the graph comprised of the detected objects and the
agent’s end-effector. Inputs to the network are the object-centric feature maps, one per object node,
the objects’ velocities, the agent’s action represented as a 3D translation, as well as edge features,
which incorporate the relative 3D displacements between the nodes. The outputs of the network are
the 3D translations 6p and 3D relative rotations J7 of the object nodes at the next time step. During
message passing in the constructed graph, edge and node features are encoded and concatenated,
and messages from neighboring nodes are aggregated via summation. Our graph network is trained
supervised to minimize a standard regression loss motion prediction in forward unrolling. For more
details on the method and its implementation, see Appendix Section and We also apply
3D-OES for object pushing with model predictive control (details in Appendix Section[A.3]). While
most previous works choose bird’s eye viewpoints to minimize cross-object or robot-object occlusions
[15], our control framework can use any camera viewpoint, thanks to its ability to map input 2.5D
images to complete, viewpoint-invariant 3D scene feature maps. We empirically validate this claim
in our experimental section.

4 Experiments

We evaluate our model on its prediction accuracy for single- and multi-step object motion forecasting
under multi-object interactions, as well as on its performance in model predictive control for pushing
objects to desired locations on a table surface in the presence of obstacles. Our model is trained
to predict 3D object motion during robot pushing and falling in the Bullet Physics Simulator. For
pushing, we have objects pushed by a Kuka robotic arm and record RGB-D video streams from
multiple viewpoints. We create scenes using 31 different 3D object meshes, including 11 objects from
the MIT Push dataset [43]] and 20 objects randomly selected from camera, mug, bowl, and bed object
categories of the ShapeNet dataset [7]]. At training time, each scene contains at most two objects. We
test with varying number of objects. For falling, we use 3D meshes of the objects introduced in [24],
including a variety of shapes. We randomly select 1-3 objects and randomly place them on a table
surface, and let one object fall from a height. We train our model with three camera views, and use
either three or one randomly selected views as input during test time.

We compare 3D-OES against a set of baselines designed to cover representative models in the object
dynamics literature: (1) graph-XYZ, (2) graph-XYZ-image, (3) Visual Foresight (VF) [13]] and (4)
PlaNet [21]. See Appendix Section [D.2] for their descriptions and implementation details. We
compare our model against baselines graph-XYZ and graph-XYZ-image on both motion forecasting
and model predictive control. Since VF and PlaNet forecast 2D pixel motion and do not predict
explicit 3D object motion, we compare against them on the pushing task with model predictive
control. For further details on data collection, please refer to Appendix Section [C|

Table 1: 3D object motion prediction test error during object pushing in scenes with two objects.

Experiment Setting Model T=1 T=3 T=5
3 views (random, novel) graph-XYZ |4] translation(mm) 4.6 32.1 66.3
+ gt-bbox rotation(degree) 2.8 16.7 26.4
graph-XYZ-image [42| translation(mm) 6.0 39.3 69.7
rotation(degree) 3.4 29.8 30.7
Ours translation(mm) 3.6 22.5 43.4
rotation(degree) 2.5 12.0 20.6
1 view (random, novel) graph-XYZ-image [42] translation(mm) 6.0 39.3 69.7
+ gt-bbox rotation(degree) 3.4 29.8 30.7
Ours translation(mm) 4.1 23.6 43.8
rotation(degree) 3.1 12.2 20.3
1 view (random, novel) graph-XYZ |4] translation(mm) 6.7 35.4 68.2
+ predicted-bbox rotation(degree) 3.0 20.1 30.32
graph-XYZ-image [42] translation(mm) 6.6 43.1 71.2
rotation(degree) 3.6 31.8 32.4
Ours translation(mm) 4.3 25.2 47.0
rotation(degree) 2.7 12.1 19.7
1 view (fixed, same as train) graph-XYZ-image [42] translation(mm) 5.1 29.6 54.5
+ predicted-bbox rotation(degree) 2.6 11.0 16.9

Table 2: 3D object motion prediction test error during object falling in scenes with three to four objects.

Experiment Setting Model T=1 T=3 T=5
1views (random, novel) graph-XYZ (4] translation(mm) 5.2 11.7 278.6
+ predicted-bbox rotation(degree) 5.7 10.4 43.28
graph-XYZ-image [42] translation(mm) 8.4 17.0 620.2
rotation(degree) 9.2 16.6 117.9
Ours translation(mm) 5.0 13.1 16.4
rotation(degree) 6.1 12.6 18.7

Table 3: Success rate for pushing objects to target locations.
graph-XYZ 4] graph-XYZ-image [42) VFI13] PlaNet|21] Ours [Ours-Real
0.76 0.70 0.32 0.16 086 | 078

4.1 Action-Conditioned 3D Object Motion Forecasting

We evaluate the performance of our model and the baselines in single- and multi-step 3D motion
forecasting for pushing and falling on novel objects in Tables [T] and [2]in terms of translation and
rotation error. We evaluate the following ablations: i) using 1 or 3 camera views at the first time step,
ii) using goundtruth 3D object boxes (gt-bbox) or 3D boxes predicted by our 3D detector, iii) varying
camera viewpoints (random) versus keeping a single fixed camera viewpoint at train and test time.
Our model outperforms the baselines both in translation and rotation prediction accuracy. When
tested with object boxes predicted by the 3D object detector (Section [3.1)) as opposed to ground-truth
3D boxes, our model is the least affected. graph-XYZ-image performs on par with or even worse than
graph-XYZ, indicating that it does not gain from having access to additional appearance information.
We hypothesize this is due to the way appearance and camera pose information are integrated in
this baseline: the model simply treats camera pose information as additional input, as opposed to
our model, which leverages geometry-aware representations that retain the geometric structure of
the scene. For more analysis on multi-step unrolling, number of camera views, camera viewpoints
and visualizations of motions predictions, neural rendering, and counterfactual experiments, see
Appendix Section [B]

4.2 Pushing with Model Predictive Control (MPC)

We test 3D-OES on pushing objects to desired locations using MPC and report the results in Table 3]
Details of the experiment settings are included in Section [D.3]in Appendix. Our model outperforms
all baselines by a large margin.

Sim-to-Real Transfer We train our model solely in simulation and test it on object pushing control
tasks on a real Baxter platform equipped with a rod-shaped end-effector, similar to the setting in the
Bullet simulation (Figure[§)). Please refer to Appendix (Section[D.3.2)) for more details. We report the
success rate of real-world pushing in Table 3] (Ours-Real). Our model achieves similar success rates
for pushing in simulation and in the real world. Since geometry information is shared by simulation
and the real world by a large extent, and our model combines the viewpoint-invariant property of
the geometry-aware representation and an object-factorized structure, it presents good sim-to-real
transferrability.

5 Conclusion

We have presented 3D-OES , dynamics models that predict 3D object motion in a 3D latent visual
feature space inferred from 2.5D video streams. We empirically showed our model can generalize
across camera viewpoints and varying number of objects better than existing 2D dynamics models or
dynamics models over 3D object centroids. To the best of our knowledge, this is the first model that
can predict 3D object dynamics directly from RGB-D videos and generalize across scene variations.

Our model currently has three main limitations: (i) It requires ground-truth 3D object locations and
orientations at training time. Automatically inferring those with 3D tracking would permit our model
to be trained in a self-supervised manner. (ii) It assumes rigid object interactions. Learning dynamics
of soft bodies and fluids would require forecasting dense 3D motion fields, or considering sub-object
(particle) graphs. (iii) It is deterministic. Handling stochasticity via stochastic models or objectives
would permit to learn more complex and multimodal object motions.

References

[1] Pulkit Agrawal, Ashvin Nair, Pieter Abbeel, Jitendra Malik, and Sergey Levine. Learning to poke by
poking: Experiential learning of intuitive physics. CoRR, abs/1606.07419, 2016. URL http://arxiv,

http://arxiv.org/abs/1606.07419
http://arxiv.org/abs/1606.07419

2

—

[3

—

[4

—_

[5

—

(6]

[7

—

(8

—_—

[9

—

(10]

(11]
(12]

(13]

(14]

(15]
(16]
(17]
(18]
[19]
[20]
[21]
[22]
(23]

[24]

[25]

org/abs/1606.07419,

Anurag Ajay, Jiajun Wu, Nima Fazeli, Maria Bauzd, Leslie Pack Kaelbling, Joshua B. Tenenbaum, and
Alberto Rodriguez. Augmenting physical simulators with stochastic neural networks: Case study of planar
pushing and bouncing. CoRR, abs/1808.03246, 2018. URL http://arxiv.org/abs/1808.03246,
OpenAl: Marcin Andrychowicz, Bowen Baker, Maciek Chociej, Rafal Jozefowicz, Bob McGrew, Jakub
Pachocki, Arthur Petron, Matthias Plappert, Glenn Powell, Alex Ray, et al. Learning dexterous in-hand
manipulation. The International Journal of Robotics Research, 39(1):3-20, 2020.

Peter W. Battaglia, Razvan Pascanu, Matthew Lai, Danilo Jimenez Rezende, and Koray Kavukcuoglu.
Interaction networks for learning about objects, relations and physics. CoRR, abs/1612.00222, 2016.
Peter W Battaglia, Jessica B Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinicius Zambaldi, Mateusz
Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan Faulkner, et al. Relational inductive
biases, deep learning, and graph networks. arXiv preprint arXiv:1806.01261, 2018.

A. Byravan and D. Fox. SE3-Nets: Learning rigid body motion using deep neural networks. CoRR,
abs/1606.02378, 2016.

Angel X. Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qixing Huang, Zimo Li, Silvio
Savarese, Manolis Savva, Shuran Song, Hao Su, Jianxiong Xiao, Li Yi, and Fisher Yu. ShapeNet: An
Information-Rich 3D Model Repository. Technical Report arXiv:1512.03012 [cs.GR], Stanford University
— Princeton University — Toyota Technological Institute at Chicago, 2015.

Michael B. Chang, Tomer Ullman, Antonio Torralba, and Joshua B. Tenenbaum. A compositional object-
based approach to learning physical dynamics. CoRR, abs/1612.00341, 2016. URL http://arxiv.org/
abs/1612.00341.

Silvia Chiappa, Sébastien Racaniére, Daan Wierstra, and Shakir Mohamed. Recurrent environment
simulators. CoRR, abs/1704.02254,2017. URL http://arxiv.org/abs/1704.02254,

Sudeep Dasari, Frederik Ebert, Stephen Tian, Suraj Nair, Bernadette Bucher, Karl Schmeckpeper, Sid-
dharth Singh, Sergey Levine, and Chelsea Finn. Robonet: Large-scale multi-robot learning. CoRR,
abs/1910.11215, 2019. URL http://arxiv.org/abs/1910.11215.

Jean Decety and D. H. Ingvar. Brain structures participating in mental simulation of motor behavior: a
neuropsychological interpretation. Acta psychologica, 73 1:13-34, 1990.

Frederik Ebert, Chelsea Finn, Alex X. Lee, and Sergey Levine. Self-supervised visual planning with
temporal skip connections. CoRR, abs/1710.05268, 2017. URL http://arxiv.org/abs/1710.05268|
Frederik Ebert, Chelsea Finn, Sudeep Dasari, Annie Xie, Alex Lee, and Sergey Levine. Visual fore-
sight: Model-based deep reinforcement learning for vision-based robotic control. arXiv preprint
arXiv:1812.00568, 2018.

Frederik Ebert, Chelsea Finn, Sudeep Dasari, Annie Xie, Alex X. Lee, and Sergey Levine. Visual foresight:
Model-based deep reinforcement learning for vision-based robotic control. CoRR, abs/1812.00568, 2018.
URL http://arxiv.org/abs/1812.00568,

Kuan Fang, Yuke Zhu, Animesh Garg, Silvio Savarese, and Li Fei-Fei. Dynamics learning with cascaded
variational inference for multi-step manipulation, 2019.

Chelsea Finn and Sergey Levine. Deep visual foresight for planning robot motion. CoRR, abs/1610.00696,
2016.

Chelsea Finn, Ian Goodfellow, and Sergey Levine. Unsupervised learning for physical interaction through
video prediction. In Advances in neural information processing systems, pages 64-72, 2016.

Katerina Fragkiadaki, Pulkit Agrawal, Sergey Levine, and Jitendra Malik. Learning visual predictive
models of physics for playing billiards. CoRR, abs/1511.07404, 2015.

Carl Gabbard. The role of mental simulation in embodied cognition. Early Child Development and Care,
183(5):643-650, 2013.

David Ha and Jiirgen Schmidhuber. World models. CoRR, abs/1803.10122, 2018.

Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas, David Ha, Honglak Lee, and James
Davidson. Learning latent dynamics for planning from pixels. In International Conference on Machine
Learning, pages 2555-2565, 2019.

Adam W Harley, Fangyu Li, Shrinidhi K Lakshmikanth, Xian Zhou, Hsiao-Yu Fish Tung, and Katerina
Fragkiadaki. Embodied view-contrastive 3d feature learning. arXiv, 2019.

Kaiming He, Georgia Gkioxari, Piotr Dolldr, and Ross B. Girshick. Mask R-CNN. CoRR, abs/1703.06870,
2017. URL http://arxiv.org/abs/1703.06870.

Michael Janner, Sergey Levine, William T. Freeman, Joshua B. Tenenbaum, Chelsea Finn, and Jiajun Wu.
Reasoning about physical interactions with object-oriented prediction and planning. CoRR, abs/1812.10972,
2018. URL http://arxiv.org/abs/1812.10972.

Thomas Kipf, Ethan Fetaya, Kuan-Chieh Wang, Max Welling, and Richard Zemel. Neural relational
inference for interacting systems, 2018.

http://arxiv.org/abs/1606.07419
http://arxiv.org/abs/1606.07419
http://arxiv.org/abs/1808.03246
http://arxiv.org/abs/1612.00341
http://arxiv.org/abs/1612.00341
http://arxiv.org/abs/1704.02254
http://arxiv.org/abs/1910.11215
http://arxiv.org/abs/1710.05268
http://arxiv.org/abs/1812.00568
http://arxiv.org/abs/1703.06870
http://arxiv.org/abs/1812.10972

[26]

(27]
(28]

[29]

(30]

(31]

(32]
(33]

(34]

[35]

(36]

(37]

(38]

(39]

(40]
[41]
[42]
[43]

[44]

Yunzhu Li, Jiajun Wu, Russ Tedrake, Joshua B. Tenenbaum, and Antonio Torralba. Learning particle
dynamics for manipulating rigid bodies, deformable objects, and fluids. In International Conference on
Learning Representations, 2019. URL https://openreview.net/forum?id=rJgbSn09Ym.

Michaél Mathieu, Camille Couprie, and Yann LeCun. Deep multi-scale video prediction beyond mean
square error. CoRR, abs/1511.05440, 2015. URL http://arxiv.org/abs/1511.05440.

R. C. Miall and D. M. Wolpert. Forward models for physiological motor control. Neural Netw., 9(8):
1265-1279, November 1996. ISSN 0893-6080. doi: 10.1016/S0893-6080(96)00035-4.

Damian Mrowca, Chengxu Zhuang, Elias Wang, Nick Haber, Li Fei-Fei, Joshua B Tenenbaum, and
Daniel LK Yamins. Flexible neural representation for physics prediction. In Advances in Neural Information
Processing Systems, 2018.

Junhyuk Oh, Xiaoxiao Guo, Honglak Lee, Richard Lewis, and Satinder Singh. Action-conditional video
prediction using deep networks in atari games. arXiv preprint arXiv:1507.08750, 2015.

Junhyuk Oh, Xiaoxiao Guo, Honglak Lee, Richard L Lewis, and Satinder Singh. Action-conditional video
prediction using deep networks in atari games. In Advances in neural information processing systems,
pages 2863-2871, 2015.

Deepak Pathak, Pulkit Agrawal, Alexei A. Efros, and Trevor Darrell. Curiosity-driven exploration by
self-supervised prediction. CoRR, abs/1705.05363,2017. URL http://arxiv.org/abs/1705.05363.
Deepak Pathak, Parsa Mahmoudieh, Guanghao Luo, Pulkit Agrawal, Dian Chen, Yide Shentu, Evan
Shelhamer, Jitendra Malik, Alexei A. Efros, and Trevor Darrell. Zero-shot visual imitation. In /ICLR, 2018.
Lerrel Pinto, Dhiraj Gandhi, Yuanfeng Han, Yong-Lae Park, and Abhinav Gupta. The curious robot:
Learning visual representations via physical interactions. CoRR, abs/1604.01360, 2016. URL http:
//arxiv.org/abs/1604.01360.

Alvaro Sanchez-Gonzalez, Nicolas Heess, Jost Tobias Springenberg, Josh Merel, Martin Riedmiller, Raia
Hadsell, and Peter Battaglia. Graph networks as learnable physics engines for inference and control.
arXiv:1806.01242, 2018.

Yuval Tassa, Tom Erez, and William D Smart. Receding horizon differential dynamic programming. In
Advances in neural information processing systems, pages 1465-1472, 2008.

Joshua Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech Zaremba, and Pieter Abbeel. Domain ran-
domization for transferring deep neural networks from simulation to the real world. CoRR, abs/1703.06907,
2017. URL http://arxiv.org/abs/1703.06907.

Hsiao-Yu Fish Tung, Ricson Cheng, and Katerina Fragkiadaki. Learning spatial common sense with
geometry-aware recurrent networks. arXiv:1901.00003, 2018.

Jiajun Wu, Ilker Yildirim, Joseph J Lim, Bill Freeman, and Josh Tenenbaum. Galileo: Perceiving physical
object properties by integrating a physics engine with deep learning. In C. Cortes, N.D. Lawrence, D.D.
Lee, M. Sugiyama, R. Garnett, and R. Garnett, editors, Advances in Neural Information Processing Systems
28, pages 127-135. Curran Associates, Inc., 2015.

Jiajun Wu, Erika Lu, Pushmeet Kohli, Bill Freeman, and Josh Tenenbaum. Learning to see physics via
visual de-animation. In Advances in Neural Information Processing Systems, pages 153-164, 2017.
Yufei Ye, Dhiraj Gandhi, Abhinav Gupta, and Shubham Tulsiani. Object-centric forward modeling for
model predictive control, 2019.

Yufei Ye, Dhiraj Gandhi, Abhinav Gupta, and Shubham Tulsiani. Object-centric forward modeling for
model predictive control. the Conference on Robot Learning (CoRL), 2019.

Kuan-Ting Yu, Maria Bauza, Nima Fazeli, and Alberto Rodriguez. More than a million ways to be pushed:
A high-fidelity experimental data set of planar pushing. CoRR, abs/1604.04038, 2016.

Andy Zeng, Shuran Song, Johnny Lee, Alberto Rodriguez, and Thomas A. Funkhouser. Tossingbot:
Learning to throw arbitrary objects with residual physics. CoRR, abs/1903.11239, 2019.

https://openreview.net/forum?id=rJgbSn09Ym
http://arxiv.org/abs/1511.05440
http://arxiv.org/abs/1705.05363
http://arxiv.org/abs/1604.01360
http://arxiv.org/abs/1604.01360
http://arxiv.org/abs/1703.06907

Appendix

A Additional method details

A.1 View prediction and 3D object detection with GRNNSs

View prediction for visualizing latent 3D neural simulations We train GRNNs end-to-end for
RGB view regression in videos of static scenes and moving cameras as proposed in [38], by neurally
projecting the 3D scene feature maps and mapping them to 2D images. Our decoder involves a
differentiable 3D-to-2D projection module that projects the 3D scene feature representation after
orienting it to the query camera viewpoint. The projected features are then decoded into images
through a learned decoder. In this way, the trained projection and decoding module can be used to
interpret and visualize the 3D latent feature space with view-specific 2D images, given any desired
camera viewpoint.

3D object detection Our model uses a 3D object detector to map the 3D scene neural map M
to a variable number of object axis-aligned 3D boxes and corresponding 3D segmentation masks,
i.e., binary 3D voxel occupancies: O = Det(M), O = {ZA)O = (p%, Py, p%, w’ h°,d°) € RS, me €
{0,1}w"xh"xd" 5 = 1...]0|}, where pg, pg, p? stands for the 3D box centroid and w?, h?, d°
stands for 3d box size. Its architecture is similar to Mask R-CNN [23]] but uses 3D input and output
instead of 2D. Given an object 3D centroid pg, py, p7, we crop the 3D scene feature map M using a
corresponding fixed-size axis-aligned 3D bounding box to obtain corresponding object-centric feature
maps M°, 0 =1---|0O]| for all objects in the scene.

A.2 Forward unrolling with object appearance permanence

To predict long term results of actions, as well as results of action sequences, our dynamics model
needs to be unrolled forward in time as commonly done in related works [} 124} 42, 4, 25]. Different
from previous works though, 3D-OES can synthesize 3D neural scenes of future timesteps by warping
(translating and rotating) object feature maps obtained from the first timestep—as opposed to the
ones obtained from the predicted scene of the previous timestep—according to cumulative 3D motion
predictions. Specifically, given predicted 3D object motions (dp;, 07¢) at an unrolling step ¢, we
estimate the cumulative 3D rotation and translation of the object with respect to the first timestep:

Dt = Pr—1+ 0Py, T =71+ 07, t=1---T, po=0 7o =0. (N

where T denotes the number of unrolling steps thus far. Then, given 3D object segmentation masks
m? and object-centric 3D feature maps M obtained by the 3D object detector from the input RGB-D
image, we rotate and translate the object masks and 3D feature maps using the cumulative 3D rotation
7¢ and 3D translation p; using 3D spatial transformers. We synthesize a new 3D scene feature
map M, by placing each transformed object-centric 3D feature map at its predicted 3D location:
M; = Zlo(ill Draw(Rotate(m?, #7) ® Rotate(M?, #?), p¢), where superscript o denotes the object
identity, Rotate(-,) denotes 3D rotation by angle r, ® denotes voxel-wise multiplication, and
Draw (M, p) denotes adding a feature tensor M at a 3D location p. This synthesized scene map is
used for neural rendering to help interpret the predicted scene at ¢. To obtain the inputs for our graph
neural network at the next time step, we can potentially crop the synthesized 3D scene map M; at
the predicted 3D location. However, we find that directly using object features obtained in the first
time step and including accumulative relative object pose as part of the object state works better in
practice.

A.3 Model Predictive Control with 3D-OES

Action-conditioned dynamics models, such as 3D-OES, simulate the results of an agent’s actions
and permit successful control in zero-shot setups: achieving a specific goal in a novel scene without
previous practice. We apply our model for pushing objects to desired locations in cluttered environ-
ments with model predictive control. Given an input RGB-D image I that contains multiple objects,
a goal configuration is given in terms of the desired 3D location of an object Xgoqr- SD-OES infer the

scene 3D feature map M = Egrnn (/) and detects the objects present in the scene. We then unroll
the model forward in time using randomly sampled action sequences, as described in Section [3.2]

t0 t1 t3 5 t0 t1 t3 5
= -
Il_lput GT T T Input GT
views = (front gl Akl °. ° views ‘ (front ‘ k
(t0) - view) - - - - (t0) view)
-
Graph- I ! Graph- E E r's
® - . o - -

XYZ XYZ

e
s

feud il
Figure 2: Forward unrolling of our dynamics model and the graph-XYZ baseline. Left: pushing. Right:
falling. In the top row, we show (randomly sampled) camera views that we use as input to our model. The
second row shows the ground-truth motion of the object from the front view. Rows 3, 4 show the predicted
object motion from our model and the graph-XYZ baseline from the same front camera viewpoint. Our model
better matches the ground-truth object motion than the graph-XYZ baseline. The latter does not capture object
appearance in any way.

Ours Ours

We evaluate each action sequence based on the Euclidean distance from the goal to the predicted
location 5. (after T time steps) for the designated object. We execute the first action of the best
action sequence and repeat [36]. Our model combines 3D perception and planning using learned
object dynamics in the inferred 3D scene feature map.

B Additional experimental results and analysis

B.1 Analysis and additional results on 3D object motion forecasting

Multi-step forward unrolling The graph-XYZ baseline can be easily unrolled forward in time
without much error accumulation since it does not use any appearance features. Still, as seen in
Tables[I]and 2] our model outperforms it. graph-XYZ is oblivious to the appearance of the object and
thus cannot effectively adapt its predictions to different object shapes.

Varying number of camera views Our model accepts a variable number of views as input, and
improves when more views available; yet, it can accurately predict future motion even from a single
RGB-D view. The prediction error of our single view model is only slightly higher than the model
using three random views as input. As shown in Table[I] the graph-XYZ-image baseline performs the
worst and does not improve with more views are available. We believe this is due to the geometry-
unaware way of combining multiview information by concatenation, though the model does have
access to camera poses of the input images.

Varying camera viewpoint versus fixed camera viewpoint We show in Table (1| (last 2 rows) that
graph-XYZ-image can achieve much better performance when trained and tested on a single fixed
camera viewpoint. This is a setting widely used in the recently popular learning-based visual-motor
control literature [16} 133} 41} [13]], which restricts the corresponding models to work only under
carefully controlled environments with a fixed camera viewpoint, while ours performs competitively
to these model but also handles arbitrary camera viewpoints.

Visualization of the 3D motion predictions In Figure [2| we show qualitative long term motion
prediction results produced by unrolling our model forward in time (more are shown in the supple-
mentary video). Our model generalizes to novel objects and scenes with varying number of objects,
though trained only on 2 object scenes.

Neural rendering and counterfactual simulations 3D-OES not only can simulate the future state
of the scene, it also provides us a way to interpret the latent 3D representation and a space to run
counterfactual experiements. We visualize the latent 3D feature map by neurally projecting it from
a camera viewpoint to an image through a learned neural decoder, and show the resulting images
in Figure[3] We also show that our 3D representation allows us to alter the observed scene and run
conterfactual simulations in multiple ways. More results are provided in the following subsections.

o " g "] " " J "] " — — e hd — —

i

R0y KOs Ry ROy MO KOS WV o S Wl W)
t0 t1 t2 t3 t4 t5 > t0 tl t2 t3 4 t5

GT

(Query

view)

Neural

move the
object
to the left

move the
object
forward

Figure 3: Neurally rendered simulation videos of counterfactual experiments. The first row shows the
ground truth simulation video from the dataset. Only the first frame in this video is used as input to our model
to produce the predicted simulations. The second row shows the ground truth simulation from a query view.
The third row shows the future prediction from our model given the input image. The following rows show the
simulation after manipulating an objects (in the blue box) according the instruction on the left most column.

B.2 Neurally rendered physics simulations from multiple views

We show in Figure] more rendered physics simulation videos using the proposed model. The
latent 3D feature map of the proposed model is interpretable in the sense that we can render human-
interpretable RGB images from the feature map using the learned neural image decoder. More
importantly, we can render such simulation videos from any arbitrary view, and the videos captured
from different views are consistent with each other.

B.3 Additional counterfactual experiments

In Figure 5} we show more results of conducting counterfactual experiments using the learned neural
simulator. We can move objects to arbitrary position, and change their size by moving their features
explicitly in the latent 3D feature space. Although the model has never been trained on this task, it
can generate reasonable simulation results after such manipulations on the objects.

C Data collection details

Here we describe details of the data used in Section 4.

Pushing Our training data contains RGB-D video streams where the robot pushes objects which in
turn can collide and push other objects on the table. We create scenes using 31 different 3D object
meshes, including 11 objects from the MIT Push dataset [43]] and 20 objects selected from four
categories (camera, mug, bowl and bed) in the ShapeNet Dataset [[7]. We split our dataset so that 24
objects are used during training. At test time, we evaluate the prediction error on the remaining 7
objects. At training time each scene contains at most two (potentially interacting) objects. At test
time, we vary the number of objects from one up to five. We randomize the textures of the objects
during training to improve transferability to the real world [37]. We consider a simulated Kuka
robotic arm equipped with a single rod (as shown in Figure 3 of the main paper. The objects can
move on a planar table surface of size 0.6m x 0.6m when pushed by the arm, or by other objects.
We collect training interaction trajectories by instantiating the gripper nearby a (known) 3D object
segmentation mask. We sample random pushing action sequences with length of 5 timesteps, where
each action is a horizontal displacement of the robot’s end-effector ranging from 3c¢m to 6cm, and
each timestep is defined to be 200ms. We record objects displacement 1 sec after the push. We place
cameras at 27 nominal different views including 9 different azimuth angels ranging from the left
side of the agent to the right side of the agent combining with 3 different elevation angles from
20, 40, 60 degrees. All cameras are looking at the 0.1m above the center of the table, and are 1

GT video from the dataset Neurally rendered video from
the latent 3D feature maps

Input
views

(t0)

front
view

left
view

right
view

Input
views
(t0)

front
view

left
view

right
view

Input
views

(t0)

front
view

left
view

right
view

Figure 4: Neurally rendered simulation videos from three different views Left: groundtruth simulation
videos from the dataset. The simulation is generated by the Bullet Physics Simulation. Right: neurally rendered
simulation video from the proposed model. Our model forcasts the future latent feature by explicitly warping the
latent 3D feature maps, and we pass these warped latent 3D feature maps through the learned 3D-to-2D image
decoder to decode them into human interpretable images. We can render the images from any arbitrary views
and the images are consistent across views.

meter away from the look-at point. At each timestep, all cameras are purturbed randomly around
their nominal viewpoints, and we record all 27 views. At training time, our model consumes three
randomly selected concurrent camera viewpoints as input. At test time, we use the 3D object detector
to predict the 3D object segmentation mask, and our model is tested with either three or a single view
as input, all randomly selected. All images are 128 x 128. There are 5000 pushing trajectories in the
training data, and 200 pushing trajectories in the test data.

Falling We use the 3D meshes of the block objects introduced in [24]], which includes cones, cylinders,
rectangles, tetrahedrons, and traingles with a variety of shapes. We randomly select 1-3 objects and
initialize their position by placing them on the table surface, and let one object falls freely from the
air. One timestep is defined to be 40ms. All other settings are identical to the settings for pushing.

10

views)

NS 7 7 P P
s PP P EP ED @S

0 [R v R < B~ S -

GT

(Query

view)

i m _
fondertne el el Bal iel e bed
move the

object
to the right

shrink the
object

move the
object
to the left

move the
object
forward

Figure 5: Neurally rendered simulation videos of counterfactual experiments. The first row shows the
ground truth simulation video from the dataset. Only the first frame in this video is used as input to our model to
produce the predicted simulations. The second row shows the ground truth simulation from a query view. Note
that our model can render images from any arbitrary view. We choose this particular view for better visualization.
The third row shows the future prediction from our model given the input image. The following rows show the
simulation after manipulating an objects (in the blue box) according the instruction on the left most column.

D Experimental details

D.1 Implementation Details of the 3D Object Graph Neural Networks

We use ground-truth 3D bounding boxes for cropping the scene feature map M at training time, and
3D predicted boxes provided by our 3D detector at test time. The loss function is the summation of
the L2 distance between the predicted and GT translation, and the L2 distance between the predicted
and GT quaternions. The inputs to the graph networks are the cropped 3D feature maps of each
objects with the size of 16 x 16. We first transforms the object-center 3D feature map into a feature
vector with three 3D-conv layers followed by an average pooling layer and two FC layers of size 32
with leaky-relu. The vectorized object features are then concatenated with the position and orientation
of the objects as inputs to a standard graph network. In the graph network, both the node and edge
encoders are 4-layer MLPs with layer size of 32 and leaky-relu activation. Our model is initialized
with Xavier initialization and trained using the Adam optimizer for 90K steps. We train two separate
models, one for pushing and one for falling.

For the 2D-to-3D image encoding using GRNNs [38]], we follows the exact neural architecture as in
[38]], which takes as input RGB-D images and outputs 3D feature map M; of size 64 x 64 x 64 x 32.
Our detector also follows the architecture design of [38]], which extends the 2D faster RCNN
architecture to predict 3D bounding boxes from 3D features maps, as opposed to 2D boxes from
2D feature maps. The detector takes the output 3D feature map from the 2D-to-3D lifting as input
to predict object bounding boxes. The detector consists of one down-sampling layer and three 3D
residual blocks, each having 32 channels. We use 1 anchor box at each grid location in the 3D feature
map with a size of 0.12 meters. The detector predicts an objectness score for each anchor box and
selects boxes that exceeds a threshold. We set the threshold to be 0.9. We train the object detector
with all the frames in the training data.

D.2 Implementation Details for Baselines

Here we describe the baselines discussed in Section 4 in detail.

11

1. graph-XYZ, a model that uses the 3D object centroid (X, Y, Z) as object state, and incorporate
cross-object interactions for forecasting 3D translation using graph convolutions over a object
graph, similar to [3}40]. Since the canonical pose of an object is undefined, object orientation
is not included in the object state. This model neglects object shape and appearance. The
graph networks used in all baselines follow the exact design as the one we use in our model
(4-layer MLPs for both the node and edge encoder). The only difference is that its inputs do
not contain any object appearance features.

2. graph-XYZ-image, a model that uses the 3D object centroid (X, Y, Z) and object-centric
2D image feature embeddings for forecasting 3D translation. This baseline model extracts
2D CNN features from each image, concatenates the features with the camera viewpoint,
and transforms the combined features into an object appearance feature vector. The feature
vector is concatenated with the 3D object centroid and fed into a graph network (identical to
the one used in graph-XYZ) to predict future object 3D translation. When taking multiple
views as inputs, the model takes the average of the appearance feature vectors across views.

3. Visual Foresight (VF) [[13], a model that uses the current frame and the action of the agent
to predict future 2D frames by “moving pixels" based on predicted 2D pixel flow fields.
It is based on the publicly available code of [[13]] that uses such frame predictive model to
infer an action trajectory that brings an object pixel to the desired (2D) location in the image
space.

4. PlaNet|21]], a model that learns a scene-level embedding by predicting future frames and
the reward given the current frame. PlaNet only deals with single-goal tasks and does not
apply to our multi-goal pushing task. We extend it to our setting by appending the goal state
to the observation. In practice, we augment the latent state vector produced from its state
encoder’s first fully connected layer with a randomly selected goal, and provide the model
with reward computed correspondingly. The reward at each timestep is the computed as the
negative of the distance-to-goal.

Note that both VF and PlaNet are self-supervised models that do not require ground-truth object states
during training. However, we believe that since such supervision is readily accessible in simulation,
we should leverage them to push the performance of the learned dynamics model. Self-supervised
models are more favored when trained directly in the real world, where strong supervisions are not
available, but as we showed in our experiments, our model trained solely in simulation can transfer
reasonably well to the real world without any fine-tuning. As a result, we believe including the
comparison with such self-supervised baselines is arguably fair and reasonable.

D.3 Details for Pushing with MPC

Here we described details of pushing with MPC discussed in section 4.3.

D.3.1 Pushing in simulation

Pushing without obstacle We test the performance of our model with MPC to push objects to
desired locations. We run 50 experiments in the Bullet simulator. For each testing sample, we place
either 1 or 2 objects in the 0.6m x 0.6m workspace randomly, and sample a random goal for each
object. The maximum distance of the goal to the initial position for each object is capped at 0.25m.
For our model and graph-XYZ-image, we use a single randomly sampled view. For VF and PlaNet,
we use a fixed top-down view for both training and testing. We set the maximum number of steps for
each action sequence to be 10, and evaluate 30 random action sequences before taking an action.
We use planning horizon of 1 since greedy action selection suffices for this task. The results are
reported in Table 3 in the main paper. Note that we also train and test variants of VF and PlaNet to
take observations from varying camera viewpoints, together with camera pose information. However,
they both fail completely on this task.

Collision-free pushing In order to test our model’s multi-step prediction performance, we evaluate
our model on pushing in scenes with randomly sampled obstacles, and the robot is required to push an
object to desired goal without colliding into any obstacle. For quantitative evaluation, we randomly
place an object of interest and a goal position in the planar workspace. One obstacle object is placed

12

between them with a small perturbation, so that there exists no straight collision-free path to reach the
goal. The distance from the object to its goal is uniformly sampled from the range [0.24m, 0.40m].
Similarly, we run 50 examples, and use only one randomly selected camera view as input to our model.
We evaluate 60 randomly sampled action sequences with length of 25 steps, and use a planning
horizon of 10 steps. We achieve a success rate of 0.68 for this task.

Since randomly placing multiple obstacles in the scene for quantitative evaluation while ensuring
existence of collision-free path is non-trivial, we show qualitative planning results for such complex
scenes in the supplementary video.

For both with- and without- obstacle pushing, it is considered a successful pushing sequence if all
objects end up within 4cm (about half of the average object size) from the target positions on average.

Figure 8: Collision-free pushing on a real-world setup. The task is to push a mouse to a target location
without colliding into any obstacles. Our robot can successfully complete the task with 3 push attempts.

D.3.2 Sim-to-real transfer for pushing in the real world

We use a Baxter robot equipped with a rod-shaped end-effector attached to its right hand, similar to
the setting in the Bullet simulation. One Intel RealSense D435 RGB-D camera is attached to the
robot’s left hand, and we use only one view for our experiment, as shown in Figure[6] Please refer to
the supplementary video for more qualitative results.

Due to reachability considerations, we down-scaled the size of the planar workspace by twice from the
one in simulation, resulting a workspace of 0.3m x 0.3m. For a fair comparison, we also down-scaled
with the same factor the object-to-goal distance, length of horizontal movement per action step, and
size of the tolerance for determining success/failure. We pick 20 objects with size of 5 to 10cm,
which are commonly seen in a office setting, including fruits, wooden blocks, and stationery, and
evaluate 5 pushing samples for each of them. Some of objects selected are shown in Figure|[7]

For object detection in the real-world, we train our 3D detector using simulated data, and fine-tune it
using a small set of real data (100 images capturing 25 distinct object configurations) collected using
4 cameras. The ground truth bounding-boxes and segmentation masks are obtained via background
subtraction.

In Figure 8] we qualitatively show an example of pushing objects along collision-free trajectories in
complex scenes in the real-world setup.

13

	Introduction
	Related Work
	Object-Factorized Environment Simulators (3D-OES)
	Differentiable 2D-to-3D lifting with Geometry-Aware Recurrent Networks (GRNNs)
	3D Object Graph Neural Networks for Motion Forecasting

	Experiments
	Action-Conditioned 3D Object Motion Forecasting
	Pushing with Model Predictive Control (MPC)

	Conclusion
	Additional method details
	View prediction and 3D object detection with GRNNs
	Forward unrolling with object appearance permanence
	Model Predictive Control with 3D-OES

	Additional experimental results and analysis
	Analysis and additional results on 3D object motion forecasting
	Neurally rendered physics simulations from multiple views
	Additional counterfactual experiments

	Data collection details
	Experimental details
	Implementation Details of the 3D Object Graph Neural Networks
	Implementation Details for Baselines
	Details for Pushing with MPC
	Pushing in simulation
	Sim-to-real transfer for pushing in the real world

